yv-t72-¢ K
7259132
SANTA CLARA UNIVERSITY 994

~ w7 pepartment of Electrical Engineering and Comuter Science

"performance Analysis of Local Area Networks"

Final Report

Submitted to:

Mr. John Yin, Manager
Communications and Networks Development
Branch
NASA-Ames Research Center, MS 233-18
Moffett Field, CA 94035

Prepared by:

Dr. Hasan S. AlKhatib, PI
and

Ms. Mary Grace Hall, RA

Department of EECS

Santa Clara University

Santa Clara, CA 95053

July, 9, 1990

(NASA-C?-166639) PERFURMANCE ANALYSIS OF N9O-2675T
LOCAL ARCA NETWORKS fFinal Report (Santa |
Clura uUniv.) 99 p csCl o9R

unclus

33/62 6289135

TABLE OF CONTENTS

ABSTRACT
INTRODUCTION

DESCRIPTION OF SIMULATION LEVELS
I. LEVEL_Q
IT. LEVEL.1
III. LEVEL_2
IV. NETWORK

IMPLEMENTATION OF NETWORK LAYERS

I. IMPLEMENTATION OF HOST LAYER
HOST TRANSMITTER
HOST RECEIVER

II1. IMPLEMENTATION OF TCP LAYER
TCP TRANSMITTER
TCP RECEIVER

II1I. IMPLEMENTATION OF IP LAYER
IP TRANSMITTER
IP RECEIVER

(Iv. IMPLEMENTATION OF CSMA/CD LAYER

CSMA/CD TRANSMITTER _
CSMA/CD RECEIVER
CSMA/CD CHANNEL

MAREFILE DESCRIPTION
CONCLUSION

-

PRECEDING PAGE BLANK NOT FILMED

NN ad@mOon = []

ABSTRACT

This report describes a simulation of the TCP/IP protocol
running on a CSMA/CD data link layer. The simulation was
implemented using the simula language, an object oriented
discrete event language. It allows the user to set the number of
stations at run time, as well as some station parameters. Those
parameters are the interrupt time and the dma transfer rate for
each station. In addition, the user may configure the network at

ronhitmscwathhstshidogsoflddifEvenhlobhnpateviétites TFrottpresansec
available, and the parameters of both types are read from input
files at run time. The parameters include the dma transfer rate,
interrupt time, data rate , average message size, maximum frame
size and the average interarrival time of messages per station.

The information collected for the network is the throughput
and the mean delay per packet. For each station , the number of
messages attempted as well as the number of messages successfully
transmitted is collected in addition to the throughput and mean
packet delay per station.

P

INTRODUCTION

The purpose of this simulation is to allow a user to model a
network with specific station parameters to see the
characteristics of its behavior. In this way, an existing network
may be examined, as well as the effect of any change on the
network. For example, to see the effects of adding a station to
an existing network without actually doing 1t, the network could
be simulated with the added station using this tool. The
simulation could be run with varying characterigtics of the added
station, and the performance of the network under those
conditions could be examined.

To implement this simulation, four basic layers were
deliminated. They are the host,tcp,ip,and csmacd. (The host
layer basically encompasses user and high level characteristics.)
Within each layer, the basic functionality of each was modeled
using petri nets. For each layer, a transmitter and a receiver
entity were defined. Using the petri nets, the possible states
were modeled as well as the events that cause state transitions
to occur.

Because simula supports the notion of inheritance, common
characteristics were grouped together in progressive levels of
definition. For example, each entity requires a buffer to store
messages in, whether it is part of the host,tcp,ip,or csmacd
layer. Therefore , in implementing the lowest level of this
simulation (level_0) the class entity was declared with all the
common characteristics defined at that level, including the
buffer. Subsequent levels were progressively defined based on
preceeding level class declarations until the specific functions
for each layer of the network simulated were implemented.

To allow the user to set variables at run time , this
simulation is invoked at the topmost level (network level)
after prompting the user for the configuration parameters. These
parameters are then passed down to the lower levels as needed, or
used as global variables when appropriate.

To sum up, it requires eight entities to represent a single
station; a receiver and transmitter for each of the host,tcp, ip,
and csmacd layers.

DESCRIPTION OF SIMULATION LEVELS

Because simula supports the notion of inheritance, the
software was designed in a series of levels, each one defining
structures that are common to the next level. This was done to
make the software easier to modify and adapt to future changes,
for example modeling a different network protocol. It also
maintains the commonality of the software, and helps simplify the
design.

The levels designed are level_0,level_1,level_2 and the
network level. They are described below.

I. LEVEL_O

Level_0 contains the fundamental building blocks of the
simulation, the entity and its supporting structures. The process
class entity describes the fundamental process structure that all
of the station processes require. That is, all the transmitters
and receivers of the host,tcp,ip, and csmacd layers.

Each of these processes require a variable state, used to
define the current state of the entity (FREE,SENDING,RECEIVING,
etc). Upon creation, each entity is set to the FREE state. In
addition to the state, each entity also requires a buffer for
holding messages or frames and a frame pointer. For ease in
programming, a variable return_code is defined to hold the return
value of procedure calls.

In addition to the declared variables, the process entity is
called with several arguments that define station
characteristics. This was done to allow these values to be read
from an input file. A title is passed in for use in debugging and
future plotting. The id number refers to the id number of the
station. Although the id number is common to each of the eight
entities that represent a station, it must be passed individually
to each entity at the time of creation. It is through the id
number that each station knows itself. It is used as an array
index. For example, tx_ip(id) would activate tx_csmacd(ip) to
pass a frame. The dma_xfer_rate and interrupt_time are also
station parameters. These are read from the input file, and
passed down to the creation of the entity.

The basic class message is also defined in this layer. It
contains all the variables required to collect data about the
message for later analysis. The basic definition is that of a
link class for manipulation in a queue.

The last significant variable defined in this level is the
variable u. This variable is used as a random seed generator.

[I—" |m11

d

ITI. LEVEL_1

Level_1 begins the separation of network layers. In the
level, the entity classes host,tcp, ip, and csmacd are defined.
All aspects that are common to the transmitter and receliver of
each network layer are defined here. For example, both the
transmitters and receivers of each layer must receive frames from
their adjacent layers, so a procedure receive 13 defined for each
entity class.

In addition to the network layer classes, the class window
and tcp_timer are defined for use by the tcp layer. The window
controls how many messages may be outstanding at once, and the
timer is set whenever a transmission is sent.

ITT. LEVEL_2

Level_ 2 defines the structure of the network. It contains
includes for all the specific entities that define a station
(tx_host,rx_host,etc). These entities are described under
IMPLEMENTATION OF NETWORK LAYERS. This layer revolves around the

* variable num_of_stations, which is passed in as a calling

argument. The num_of_stations sets the number of stations for the
simulation. The entities that define each station are declared as
arrays from one to the num_of_stations. In order to declare a
variable size array, the array parameter must be passed in as a
calling argument. Besides declaring the arrays of entities that
compose the stations, the entities are also instantiated and
activated. They are instantiated to allow the creation of their
support structures, such as their buffers. The activation allows
for the initialization of the entities to their first passivation
point in the while true loop, which is where they begin to loop
on their subsequent states.

Since the simulation allows for more than one type of
station at the user’s discretion, stations are created using two
for loope. The for loops are controlled by the num_typea_stations
and num_of_stations. The first loop from one to
num_typea_stations configures stations with the varlables
dma_xfer_rate and interrupt_time. This represents the creation of
type a stations.

The second for loop runs from num_typea_stations + 1 until
num_of_stations. This creates stations of type b, using the
variables b_dma_xfer_rate and b_interrupt_time. This method
results in type a stations having the lowest i1d numbers. For
example, if the user chooses to have twenty stations total and
five type a stations, then the stations with id numbers from one
to five will be the type a stations and the stations with id
numbers from six to twenty will be type b stations.

In addition to the declaration of the entities that comprise
the stations, a collection queue is also listed as an include
file at thls level. The collection queue collects all data used
to measure performance.

IV. NETWORK

The network level performs two basic functions: it manages
all user interface and calls the simulation. In order to call the
simulation, all variables required by the simulation must be set.
This is accomplished both by absorbing the user inputs and
calculating certain key variables. The network level also
controls the length of the simulation, based on the number of
messages successfully transmitted per station.

The user interface is composed of two parts, prompting the
user and writing data collected to an output file. The user 1is
prompted for the number of stations and their type. To choose the
type of station, three options are offered: type_a stations,
type_b stations or a mix of the two. If a mix of station types is
chosen the user 1is again prompted for the number of type_a
stations. If the user chooses to have more type_a stations than
the number of stations, the value is automatically reset to the
number of stations. No other error checking is performed on the
user input.

After the number and type of stations have been defined, the
input files are read to obtain the values of station
characteristics. There are two station types currently
implemented, and the corresponding values of these types are
contained in the file " station_typea" and "station_typeb". The
names of the input files are directly referenced in the network
layer. To add another input file containing station
characteristics, the network layer would require modification.
The modifications required would be the addition of the new input
file, and the definition of new variables for the dma_xfer_rate
and interrupt_time, which are currently the only difference
between the station types. The new variables would be passed as
calling arguments to the simulation.

The format of the input files is identical, regardless of
the station type they define.The input files are read using the
read_input routine, which assigns the values in the file to the
corresponding variables. For this reason, the order of the values
in the file is crucial for correct assignment. The read_input
routine reads a single value from each line of the input file.
The variables read in their assigned order are data_rate,
interrupt_time, dma_xfer_rate, aver_arrival_time, prop_delay,
max_frame_gize, and aver_msg_size. All the values are real except
the last two, which are integer.

The output file is written at the end of the simulation. It
contains information on the throughput and average delay per
frame for the individual stations and the whole network. Also
included is the number of successful and rejected messages per
station as well as the simulation time required. All values are
calculated in the collection_queue routines. The output is
written to a file "output"” using the print_data routine. The file
name is directly referenced in that routine. A modification to
the output file would require changes to be made to the
print_data routine, and the collection_queue routines that

calculate the data.

After the input files have been read,the value of tau is
calculated. The simulation is called with the value of tau and
all variables read from the input files as calling argumentse. The
gsimulation then loops until each station achieves a minimum
number of successful transmissions. The data 1is then collected,
first on a per station basis and then for the network as a whole.
It is then printed, and the program terminates.

IMPLEMENTATION OF NETWORK LAYERS

Each of the layers described below represents a network
level protocol. They are represented by both a transmitter and
receiver entity concerned with the prassage of messages. The

various states of the entities are listed,along with events that
cause a state transition.

I. IMPLEMENTATION OF HOST LAYER

The host layer of this simulation represents all upper
layers of network protocol above the tcp layer. In this layer the
arrival of new messages is generated and their final reception
occurs. This is accomplished by use of message queues, one for
the transmitter and one for the recelver,

HOST TRANSMITTER

The host transmitter has no defined states. It loops on
generating messages. After a message is generated, the host
transmitter checks to see if the tcp transmitter is idle. If it
is, it activates it, holds for an interrupt time, and then loops
back to generate the next message.

The generate_messages procedure of the host transmitter is
responsible for setting message parameters and their arrival
rate. It begins by using the global variables aver_arrival_time
and u to get a random arrival time. It holds for this amount of
time before proceeding to simulate a poisson arrival rate.

The queue length is checked next to see if it is less than
MAX_HOST_MESSAGE_COUNT. This is done because of the memory
constraints imposed running the simulation. It is desirable to
have no restrictions on the number of messages the host
transmitter may generate,but since the arrivals of the messages
is a poisson process, it has no memory of past arrivals. So the
modeling of the arrivals remains valid.

If there is room in the message queue, a new message is
created. The time of creation is noted for bookkeeping purposes.
A random destination other than its own address is generated. The
size of the message is assigned using the global variable
aver_msg_size. The message is placed in the queue so that the tcp
transmitter may process it. The host transmitter then loops back
around to generate the next message.

HOST RECEIVER

The host receiver has two states: FREE and RECEIVING. The
FREE state is the idle state, when the host recelver is ready to
process the next message. The receiver is capable of receiving
more than one message in its queue at once, as compared to the
lower layers that process one frame at a time.

When a message arrives, a state transition to RECEIVING
occurs. The message is taken out of the queue and discarded,

since all bookkeeping regarding the megssage is done by the tcp
receiver. The state then transitions back to free after holding
for an interrupt time.

II. IMPLEMENTATION OF TCP LAYER

The tcp layer is composed of two entitieg, the transmitter
and the receiver as well as a number of supporting structures for
the processing of messages. On the transmitter side this layer
recelves messages from the host, and breaks them into frames for
transmission. On the receiving side, it re-assembles the frames
back into messages and passes them to the host. The tcp layer is
responsible for determining if frames sent have been received.
Positive acknowledgements are used to accomplish this. A buffer
and a window are used to process messages. Although each of these
has a maximum size, if there is not enough room to process the
messages, this upper limit is simply increased to accomodate
them. To decrease the number of transmissions across the network,

an&nhn&aagémem&ﬂstarDigéxhabaehudhuna&aLpaoheteLuhaheueVQpnﬂeéblblu.

TCP TRANSMITTER

The tcp transmitter has three states: FREE, RECEIVING, and
SENDING. The FREE state is the idle state, with no messages to
process or packets to send. If there are any messages from the
host layer of that station to transmit, a state transition to the
RECEIVING state occurs, provided that the buffer of the tcp
transmitter is not full.

In this state, messages are removed from the host message
queue and packetized for transmission. They are also added to a
collection queue for easy data retrieval when the transmission is
completed.

The tcp transmitter removes mesgages directly from the host
message queue of that station. In addition to transmitting
messages, it also transmits acknowledgements and re-transmits
packets that have timed out. If there are any acknowledgements,
time-outs, or data packets to send a state transition to the
SENDING state occurs. In this s8tate,” whenever a tranasmission is
sent a timer is set. Should the timer expire before an
acknowledgement for the transmission is received, the
transmission is resent and the timer reset.

Transmissions are sent on a priority basis.The message with
the highest priority is an acknowledgement, followed by a re-
traismission of a message that has timed out and lastly a data
packet.

TCP RECEIVER

The tcp receiver has two states: FREE and RECEIVING. The
FREE state is the idle state, when the tcp receiver is available
to receive and has no frame to process. In this state, it
activates the ip receiver in case it has any frames to send and
then passivates.

When a frame arrives, a state transition to RECEIVING
occurs. The type of the frame is checked to see if it is a data

oy

10 -

frame and/or an acknowledgement frame. If it is an acknowledgement
frame, the procedure ack_message of the transmitter is called to
process it. A data frame is processed by the receiver.

Next the frame is removed from the window and the buffer,
and the sizes are adjusted accordingly. If the frame is the last
data frame of a messzage, the message 1= re-assembled and
forwarded to the host receiver. The host recelver iz then
activated to process the message.

IITI. IMPLEMENTATION OF IP LAYER

The ip layer implementation is composed of two entlties, the
receiver and transmitter. It is a very simple layer that recelives
a pointer to the buffer contents and passes it to the next
appropriate layer. Both entities receive packets through thelr
receive routines. In this layer, the frame pointer is checked
directly rather than the state of the buffer. Only one packet 1is
required for the entity to activate itself.

IP TRANSMITTER

The ip transmitter has three possible states: FREE, READY,
and SENDING. FREE represents the idle state, with no frame in the
buffer. When a frame is received, a state transition to the READY
state occurs. At this stage, the ip transmitter is ready to
tranamit a frame to the csmacd layer. It calls the receilve
routine of the cesmacd transmitter for that station, and attempts
to pass the frame. It loops in that state until the frame 1s
successfully passed to the csmacd transmitter.

When the frame is successfully passed, the state transitions
to SENDING. At this point the ip transmitter activates the
transmitter entities of the tcp and csmacd layers for that
station, and resets itself.

The ip transmitter also allows for a failed transmission. If
the csmacd laver of that station is unable to transmit the frame,
it calls the routine transmit_failed. This routine in turn calls

the transmit_failed routine of the tcp transmitter of that
station.

IP RECEIVER

The ip receiver has two states: FREE and BUSY. The FREE
state corresponds to the idle state, when the receiver is
available to receive and has no current frame. In this state, the
receiver of the csmacd layer for that station is activated in
case it has a frame to send to the ip receiver. If the ip
receiver receives a frame, it transitions to the BUSY state. It
loops in that state until it successfully transmits the frame to
the tcp receiver. Whether the transmission is successful or not,
it activates the receiver of the tcp layver to allow any possible
state transitions of that layer to occur.

After a successful transmission to the tcp receiver, the
frame pointer is reset to none and the state is set to FREE.

11

Iv. IMPLEMENTATION OF CSMA/CD LAYER

The csmacd layer implementation is based on the petri net
model of the csmacd. It is composed of two entities, the receiver
and transmitter as well as the definition of a class
channel_csmacd. The entities are processes that have the
capability of activating and passivating themselves. Class
channel_csmacd, on the other hand, is a simple class definition
that basically consists of a queue. The buffer for the csmacd
layer is actually implemented as a characteristic of the csmacd
receiver and transmitter. That is to say, both the transmitter
and the receiver each have their own buffer.

Both entities receive packets through their receive
routines, which check to see if the buffer is available. If it
is,it accepts the incoming packet and sets the buffer state to
FULL. Only a single packet 1s required to set the buffer state to
FULL. If the buffer is FULL when an incoming packet arrives, it
is ignored.

Each c¢smacd entity is designed as a forever true loop. If
there is an incomlng message in the buffer or a state transition
has occurred, it loops determining through the next state
procedure if another transition can occur. When all possible state
transitions have been exhausted, it passivates. To be awakened,
the c¢smacd transmitter must be called by the ip transmitter. The
csmacd recelver, on the other hand, may be awakened either by a
sending csmacd transmitter or by its ip recelver layer.

For each possible state shown on the petri net, there is a
subroutine. The state subroutines are contained in csmacd_txs for
the transmitter, and csmacd_rxs for the receiver. These
subroutines check for potentlial transitions, and return a boolean
value of true if a transition of state occurs.

CSMA/CD TRANSMITTER

The c¢smacd transmitter has five possible states: DISABLED,
FREE, WAIT_FOR_RE_TX, ATTEMPT_TX,and ACQUIRE_CHANNEL. Each of
these states will be described below.

The FREE state represents the 1idle state, when the
transmitter 1is not engaged. In this state, for a transition to
occur, the buffer must be full and the channel must be free. If
this 1is the case, the state transitions to ATTEMPT_TX. If the
buffer is full, but the channel is not free the transmitter walts
in the channel queue until the channel becomes free.

The ATTEMPT_TX state represents the transmitter attempting
to transmit a packet. In this state, the transmitter holds for a
peroid of tau, and then checks the channel_state variable to 8ee
if it is zero. If it is, it increments the channel_state variable
and holds for another tau . It then checks to see 1if the
channel_state variable is greater than one. If it is, a collision
has occurred. If not, it ends the collision window and

12

transitions the state to ACQUIRE_CHANNEL. If a collision occurs,
the state is set to DISABLED. So, from the ATTEMPT_TX state there

is always a state transition to either ACQUIRE_CHANNEL or
DISABLED. '

The DISABLED state represents the period when a station
realizes it has has collided with one or more stations and must
jam transmissions. Each station involved in a collision will
independently realize the event by checking the channel_state
variable. In this way, the channel remains a passive element and
the 1individual stations are the active determinants of theilr
state.

When a station realizes it is disabled, it holds for a Jam
time of two tau and then changes state to WAIT_FOR_RE_TX. It
decrements the channel_state variable and checks to see if the
variable has returned to zero. This indicates that the Jjam 1is
over, and all stations involved are ready to wait for re-
transmission. If the jam is over, the station will check the
channel queue to see if there were any stations that were waiting
for the channel. If so, it wakes them up. In this way, preference
for new transmissions over transmissions involved in a collision
is preserved.

In the WAIT_FOR_RE_TX state, the station checks to see if it
has attempted to send the transmission more than max_tries (
sixteen attempts). If it has, it retrieves the frame from the
buffer and calls the transmit_failed routine of the station’s ip
layer. The csmacd transmitter is reset for the next transmission
and the ip transmitter is activated.

If the csmacd transmitter has not exceeded max_tries, it
increments a binary backoff variable n, and generates a random
number in the window of 2%%n - 1. It holds for that time times
tau, and then transitions back to the FREE state to attempt to
transmit again.

The ACQUIRE_CHANNEL state represents the station
transmitting. In this state, the collision window has ended and
the station definitely has the channel. The transmission time is
calculated based on the bits per packet divided by the data rate.
The transmitter simply sends the message by calling the receive
routine of the destination csmacd receiver, and then activating
it. No attempt is made to determine if the transmission is
successfully received. The csmacd receiver is then reset (the

buffer is empty and the state is FREE) and the ip transmitter is
activated.

CSMA/CD RECEIVER

The csmacd receiver has three possible states: DISABLED,
FREE, and RECEIVING. Because it is impossible for a recelver to
receive an unsuccessful transmission in this simulation, only the

FREE and RECEIVING states are modeled.These states are described
below.

The FREE state represents the idle state of the csmacd

13

receiver. In this state, the receiver checks to see if the buffer

is full. If it is, it resets the state to receiving. If not, it
does nothing.

The RECEIVE state attempts to pass the buffer contents to
its ip receiver.It calls the 1lp receive routine to pass the
buffer contents, and holds for rx_delay. The ip receiver is
activated, and the csmacd receiver is reset (the buffer 1is empty
and the state is FREE) . If the csmacd receiver is unsuccessful
in attempting to pass its buffer contente to the ip receiver, it
passivates until re-awakened by the ip recelver or a csmacd
receiver.

CSMA/CD CHANNEL

The c¢smacd channel is not a process class, but a gimple
class definition. It is composed of a gqueue and a class state
variable. The queue is used for stations wishing to transmit
when the channel is already in use. When the channel becomes free
(after a successful transmission or at the end of a jam) the
stations 1in the queue are all activated at once and allowed to
contend for channel acquisition. If more than one station is in
the queue, this generally results in a collision with normal
contention resolution. In this way, the behavior of the csmacd
protocol is preserved.

Access to the channel is controlled by the channel state
variable. If the channel state variable is zero, the channel is
free and a station may transition state to ATTEMPT_TX. If it is
not zero, the station enters the channel queue.

To simulate the collision window, two possible cases are
considered. After a station has transitioned states from FREE to
ATTEMPT_TX, it holds for a period of tau. It next checks the
channel state variable to see if it is still zero. If it is, no
collision has occurred yet and it continues to attempt to gain
the channel. If it is not, the station has collided with another
station and it holds for another tau and follows the collision
protocol.

If no collision occurs within the first tau period, the
station attempting to transmit increments the channel state
variable and holds for another tau. It then rechecks the channel
state variable to see if it is greater than one. If it 1s,
another station is also attempting to transmit and a collision
has occurred. If not, it has successfully gained the channel.

At the end of a successful transmission, the station
decrements the channel state variable and it returns to zero,
thus leaving the channel in a free state. In the case of a
collision, as each station completes the hold for the Jam time,
it decrements the channel state variable and checks to see if it
has returned to zero. If it has, all stations involved in the
collision have now completed their jam and the channel is free.
Any stations in the channel queue are now awakened to compete for
the channel. If the channel state variable is not zero, all
station involved in the collision have not completed their Jam
and the channel is not free.

14

MAKEFILE DESCRIPTION

A makefile is available to compile all code required by the
gimulation. By typing make, an executable called network will be
built. Since the system file that contains the grammar rules used
by make does not include the simula language, all dependencies
and rules for construction must be explicitly stated. This is
difficult to implement in simula, since compiling a ".sim"” file
results in the creation of a ".o" file and a ".s" file. The ".0o"
file contains the object code, and the ".s8" file is used by the
assembler phase of compilation. To make use of the make utility,
it was decided to state dependencies based on the ".o" files
alone, since the ".s" files are automatically generated with the
compilation anyway.

To add a new simula file to the list of files to be
compiled, the following format should be used:

new.o: new.sim
$(SIM_COMP) $x
$(SIM_ASM) $*%x.0 $Xx.s

To add a simula file that will be used as an include file in
another simula file, the dependency is listed directly:

old.o: new.sim \
other_include.sim

The above steps will insure that the dependencies are always
correct, 80 that recompilation of the appropriate files is
automatic after any modifications.

The makefile contains two targets, the network executable
and a debug executable. To use the debugger, code must be
compiled with the debug option and thus it is included. To make a
debug executable, type " make dnetwork". This will compile the
code with a debug option.

When one simula file is used as an include file in another
gimula file, no separate ".o" file is created for the included
" . gim" file. Instead, the simula code in the include file is
incorporated in the ".o" file generated for the master file. That
is why the included ".sim" file is listed as a dependency for the

master ".sim" file rather than its ".o" file that one might think
should be created.

15

CONCLUSION

In its current state of implementation, this simulation
models only LAN composed of stations. A logical progression would
be to implement bridges to allow for a more complex LAN. This
could be accomplished by creating another layer above the network
layer to call the simulation. Since the network layver as
currently implemented is a simulation call, it would have to be
modified so that there is a single simulation running rather than
a series of network simulations.

Another area of future development is the user interface.
Currently, a simple menu is presented to the user and they type
in the letter corresponding to their choice of station type. As
the user definable parameters increase, a graphical menu
interface may be more approprilate.

16

|

Rl i
@ B Ebf 1o

ORIGINAL PAGE IS

OF POOR QUALITY

! SANTA

CLARA UMIVERSITY

DEVELOFED FOR NASA/AMES
MOCCR2-584
PERFORMANCE ANALYSIS OF LAN H

KRR KR KKK KKK K KK KK KKK AR K KA AOK KKK AR R KAKAAKHK 3

this file contains the lowest level declarations

regquired in this sioul

are elther

inherited or

ation.
referenced by succeeding classes.s

Most of the following classes

'k**;

STMULATION CLASS
BEUIN

level_ O3
ITMTEGER us

HEAD CLASS message_queue(title)s
VALUE title; TEXT titles

BEGIN

END 3

(-INK CLASS
SEGIN
INTEGER bytes,
EMD;

dataunity

dest_addr,

dataunit CLASS messages

REGTH

IMTEGER type, id:

long real createtime, donetimes
long real time_per_ _messages
ROOLEAN rejected;

createtime 3= 0.0
donetime = 0.0
time_per_message = 0.03
reiected t= FALSE;

END g

message CLASS frameunitsy
REGIM
REF(message) msgptrs

INTEGER seqnum, acknum, setwindows;
BOOLEAN ack, fing

ack == FALSE
fin 3= FALq'
NMD3

HEAD CL.ASS
BEGIN
REF (frameunit) front,
INTEGER maxsize,
INMTEGER states

buffars;

tail,
cursizes;

current,

source_addr;

msgtails;

' seed

' huffer

number for
number generaltors;

ref. frame

random

pointerss;

front - NOMEj

tail z- MOMNES;

current - NOMI;
i megtail z-— MOMESj
CEMND g

FROCESS CLASBS timers:
REGIN
TRTEGER statuss;

EMD—-—0f——-timei

FROCESS CLASS entity(title,id,dmawxfer"rate,interrupt“time);
UALLUE titleg TEXT titles
TNTEGER idjy
long real dma _xfer rates
long real interruplt_times
REGIN
REF (buffer) bufs
REF(frameunit) frame;
INTEGER states
INTEGER retuwrn_codes

!**;

I n
- A
I =
-
! procedure reset;
"
{
: called by: specific process reset routiness
i a
! calls: nonegj
'3
! returns: nones
'E
! globals used:z 3§
! state 1= FREE(set to O)i
! frame = NONEejR
'3
! actions: 3§
! resets the entity variables;
1w
L]

!**;
proceduwre resels

begin
! reset Lthe variabless
state 1= Ojf 1 this sets it to freejg
frame =2—~ nonesg

end 3

' main body, set variabless
begin
! get buffer,set buffer state to EMFTY;
buf :— new buffersy
buf.state == O3
I get state of entity to FREE
state == Oj
ends;

ThITve W Wose b 9 b W W =

' main program of simulations
BEGTM

w oz 100000355 b dinitialize seeds;
FEND#ckMA T MFROGRAPMXKK §

TENDAKKSIFULATIOMKXX R

! SaMTa CLARA UNMIVERSITY
DEVEL.OFED FOR NASA/AMESD
MOCC2-554

FERFORMAMCE ANALLYSITS OF LAl H
13§ oOROK 3K KKK K K A K KKK K K K KKK K K K ok oK 3K K oK K oK KK KK KK KR KOKOKOK KKK K

'level l.sim ~ subclass of level O i
]
this file inherits allknowledge of
level O simulation and declares classes that
define common characteristics of the layers
modeled in this simulaton.s;

OK KKK K A A K S Ak ¢ AR R o KK KK KKK K oK e ok 2K K K KOROK 3K K Kk ok KK K KKK KOKK K 5
external CLASS level O3

level 0 CLASS level 13
BEGIN
SINMCLUDE define_def.sim

entity CLASS hosts
T REGIN
ref{(message_queus) msg__queue;

i“‘(message) host_msgs;

END++0F ++HOST 5

entity CLASS tcps

BEGIM

REF (window) wing

REF (frameunit) lastsentsy
REF(timeout gueuwe) timeoutqs
BOOLEAM timed_out, next _msgs
INTEGER timeout_count;

INTEGER buf_space, last_byte_sent;

integer procedure receive(recvframe);
REF (frameunit) recvframe;

' procedure receive

This procedure handles the addition of frames to the tcp

buffer. If there is room in the buffer the frame is

otherwise the receive fails.

I
]
!
! added and the buffer parameters and pointers are updated,
1
1

' Returns:z: 0K, FATLED

I Globals: buf (current buffer)

begin
integer ros
if buf.state = EMFTY then

begin I buffer is empty., receive the frame & update pointlters

vt e ames . TRITOCC R €Y

‘AN gy ‘4Y :gg MY gy 'A% 'gg AR gy AN -ax

-
n

TXT%a % F T A w ke r 3 0 Ser \ Ser TR S

huf.front - recvframes;
buf.current s— recvfirames
buf.tail 31— recvframes;
buf.state = MENMF3 ! update the state of the buffer
next _msg == TRUE;

1 gset flag to indicate message ready to send
ro s 0K I set the return code to indicate success
]

33 CEE

go to Relurns processing complete, leave this procedure H
@nd
else if buf.state = MEMF then
begin I puffer is not empty. not full, check size of frame 5
it (buf.maxsize = buf.cursize + recvframe.bvtes) then
begin I pkay to receive frame, receive it & perform updates 3

recvframe. INTO(buf):
buf.tail - recvframes;
it (buf.current == KNOME) then
begin
buf.current - recvframes
end:
roo o= 0Ky
go to Returnj

end else begin i no room for frame, set buffer to FULL & faal

buf.state = FULLJS
re 3= FAILEDs:
go to Retuwrns

ends:
Fs

end
else if buf.state = FULL then
begin U puffer FULL , receive fails

7(ro = FAILED;:
o go to Returng
endj
Retuwrns
~begin
receive = IFCj
if (rc = 0K) then

begin 1 if status okay, update the buffer’s current size
buf.cursize &= buf.cursize + recvframeg.bytess;
ends;
ends
end-—-—of-—receives;

procedure reset buffers;

cee e veae IEeme—— e M S —— ——n s own e

proceduwre reset buffer

'
!
' This procedure reset all the buffer parameters to their
' initial (empty) state.
]
1

-gg ‘M8 g3 ‘AW gz A% 'ga BN

Globals: buf (current buffer)

| QS sons e vas oo e

begin
buf.front s— MNOME;
buf.current z— MOME;
huf.tail sz~ MOME;j
buf.state == EMPTY;
buf.cursize 2= 03
end;

integer procedure outofbuf(msg_id)s
INTEGER msg_idsg

.....---.-_.—--..—-.........—........_.._—-_......_....—-....—--—-——-—.—u.—.-..——_....-...-—-......_.._..—........—«.—.—.-——.._—......——_.._.—.-__-—.m_—

1 ‘AR

I et ey vt Fev-f i F

FeCeLVE S

‘as

1

' This procedure removes all the frames of a given message
' from the tcp buffer and performs the required updates
o keep the buffer current.

gy ‘4% gz ‘A4 gz ‘A

]
' Retuwrns: DK
i
!

Globals: buf_space, buf, next_msg, return_code

&8 3y ‘A

hegin
REF (frameunit) outofptr, currentpltrs;
integer counts;
count == O3
currentptr :— buf.FIRST; ' gtart at the beginning of the buffer(buf)
retwn_code == FALLED;

while currentptr=/=NONE do ! search until end of buf reached

begin
count = count +1j ! trace through the loop for debug
if currentptr.id=msg_id then
hegin 1 take all matching id #'s out of buf

outofptr - cuwrrentptig

currentptr :— (currentptr).SUCsH

outofptr.OUT;

return_code = 0OKsj

buf_space = buf_space + outofptr.bytess;
end else
begin ' no match., update current pointer to next
currentptr :— (currentptr).sSUC;

(ends;
ends
if (return_code = OK) then
begin
buf.front =z— buf.FIRST: ! update pointers if frames removed from bt

if (buf.front =/= NONE) then
begin

next_msg == TRUE;:; ' if another message in buf, set flag to sendj
end else
begin
reset_buffer; ' no more frames to send, reset the buffer
ends;
ends

ouwtafbuf = return_codesy
end-——pf-—outofbufy

boolean procedure reserve_buffer space(addbytes);

procedure reserve_ buffer_space

!
!
! This procedure checks the space in the buffer to see if

! the entire message will fit. If so, the space is reserved
I and TRUE is returned, else FALSE is retuwned. This

I prevents partial messages in the buffer.

i

Ceturns: TRUE - success, FALSE - failure
e :

' Globals: buf (current buffer), buf_space

<33 AN gy A4 gy A¥ <gg AR gy W gy AN

integer addbytess;
begin
integer bytes_leftgj

s sk T €k wer fas s F rmpmasmm wn nedrdbssdons w

it (bytes_left = 0) then
hegin
buf_space 3= bytes_ leftis

reserve _bhuffer space = TRUE;

and else begin
buf.state == FULLj3

raserve_buffer_ space 1= FalLSEj

end;
ends

integer proceduwre set_donetime(msgptr)s

' procedure set donetime

This procedure sets the donetime parameter of the message
been sent and
collection statistics

to indicate that the message has

acknowledged. This is done for data

Returns: 0K, FATLED

(]
1
]
1
I puUrposes.
]
i
H
i

Globalss: buf (current buffer)

T cme v e et v e e e e e e vy vor. s e soes mon
REF(maessage) msgpltrs
hegin
if mesgptyr=/= MNOME then ! chechk
begin
msgptr.donetime == TIME; !
set _donetime = 0OKj !

end else begin
set_donetime 3= FATILED:
ends;
cend;

begin "maing
' set up parameters
win z— new windows;
win.state z= EMFTY3;
win.maxsize = 10240;
win.cursize = 03
timeoutqg 31— new timeout _queues
timeout_count z= 03
timed _out 3= FALSEj
next_msg == FALSE;
“end-—-of-—-maing

CEND++0OF++TCF 3
~entity CLASS ip;

REGIN
BOOLEAN csmacd_rrcg

for valid message pointer

set the current time to message donetime
status of procedure is okay

and

[lean procedure receive(recvframe)s:

RF{(frameunit) recvframes;
beagin
if (state = FREE) and (frame ==
begin
state 3= READY;
firame :— recvframes;

wesmradiiies wer TR »

instantiate windows;

MOME) then

sza ‘A% +2a "ET aa ‘A 33 A

2a "as

=3

"
13
"

end else begin
receive = FALSE;j
end 3

-t Ta

EMND g

entity CLASS csmacds

REGTN
hoolean change_states I flag for change of states
hoolean buffer _interrupts ' flag for frames in the buffers;

1 SRR RK AR KK KK KK R K R 30K K K K KK 3K 3K K ok 3K KK AR KKK AR AOK AR KR KK AR KKK

1=

-8

I w

-

! ret(frameunit) procedure get_frame_from_buffers
-y

! called by: c%macdmtxa"acquire"channel,csmacd"FX$“idle H
i

! calls: noneg

Ty

! returns: j

! a pointer to the frame from the buffers;

;; if the buffer is empty.pointer to nonej

e

A globals used: 3§

. buf — the current buffer;

I
é(actionsz 3§

! takes a frame out of the buffer;
! should set the buffer state to emptys
! does not do so because of integrity ofgj
! buffer during transmission,i.e., buffer;
! should not be released until frame is 3
! transmitteds;

T tow

1 skooK KK KoK KK oK K oK oK K K 3K oK K oK K K 3K oK K K oK K oK KK AROK KK K oK K ok KoK K K KKK KK K KKK KR OK KK 5
ref(frameunit) procedure get_frame from_buffer;

begin

ref{(frameunit) out_framej

' initialize the variabless
out_frame 1~ nonej

' if the buffer isn’t empty,get the frame outj
if (buf =/= none) then
- begin '

if (not (buf.empty)) then

begin
' get the frame from the buffer i
ouwt_frame:— buf.firsty
out_frame.outs

{ ! get the buffer states;
- 'buf.state = EMFPTY;

ends;
ends:
I get the return variablesg
- get_frame_from_buffer - out_framesj

endy

3R AR K K KK KR OK K 3K 3K K 3K KoK oK oK K KKK K K oK KRR ok Sk ok R KK KoK kK oK KKK KK R HOKOKK 5

procedure clear buffers

aa

1
i
!
! called by: reset 3
1

az

! callsy: nones
I

! returns: noney
i

globals used: 3
see belows

i
i
]
! actionss §
! resets the csmacd buffer variabless
[
1 3k oK SRR KK K K KK KKK 3K 3K A K KK K KA KKK K K KK KoK KK KA K K KK K KKK KKK KKK KOk 3
procedure clear buffers;
hegin

I gel variables back to zeroj

buf.state 3= FREE;

' reset buffer interrupts;
buffer_interrupt := falsej

- 1 reset the frame pointerss
buf.clear 3
andj

' main body for csmacds
begin
change_state = false;
buffer_interrupt = falsesj
endcl s
EMD 3

CLASS windows;

BREGIN

REF (dataunit) current, front, backs;
INTEGER maxsize, cursizes

IMTEGER state;

INTEGER ros o -~ retuwrn codey

integer procedure rxtcp_outof(frameptr)s;
REF(frameunit) frameptiry
hegin
cursize 2= cursize — frameptr.bytes;
if (cursize *» O) then
bagin
atate = MNEMNF;
front 31— front.SUC;
end else begin
reset_windows
Cendsg
rxtocp_outof == 0Kj
end—--of-—rxtcp_outof;

e bkmmmr mremcacrdhiies fvden Aot Fl Framondt et e

REF (fFrameunit) frameptirg
begin
end-—of--txtop _ouwtofs

procedure reselt_windows
hegin
state s= EPMFTY3
cursize 3= O3
front s— MOME;Z
current - MOMES;
back 31— MOME;
end;

hoolean procedure reserve_space(bytes);
integer bytes;
hegin
it maxsize » (cursize + bytes) then
bhegin
cursize == cursize + bytes:
reserve_space 1= TRUES
end else bedgin
reserve_space = FALSES
endsy
and s

procaedure cancelmreﬁerve“space(bytes);
integer bytess

hegin
cursize = cursize — bytess
and H

boolean procedure addto(frameptr);
REF (Frameunit) frameptrs

hegin
if state = FULL then
begin :
addto = FALSE;
go to Return;
endj
if state = MEMF then
begin
if maxsize »= cursize then
bhegin
state = MEMF3
current :— frameptis
back =z-— frameptrj
addto = TRUE3:
go to Returng
end ;3
if maxsize < cursize then
begin
astate 2= FULLS3
addto == FALSE;
go to Returng
end;
end 3

if state = EMPTY then
hegin
state == NEMFj
front :— frameptrs;
current 31— frameptrs;

Yooarml »e v amert s

addto == TRUE;
go to Returng
end;
s
andsg

2

negin TRKK window — main program X¥KKXK! g
state 2= 03

2nds

FEND++0F ++WINDOW 3

JEAD CLASS timeoul queues
bhegin
=l g

LIMK CLASS timeouwt unils

D@gin

= REF{tcp) layers

B REF(tcp_timer) timerptry
REF(frameunit) frameplr;
long real time_ups;
integer eventy
integer statuss

_ status = NOT_SETj
EN

—imer CLASS top_timer;
ST
(timeout_unit) top_events
long real currtimesj
procedure setup(timeout_event)s;
REF(timeout_unit) timeout_event;
begin
tep_event - timeout_events;
top_event.status == SET;
ends

procedure start;

hegin
hold{(tcp_event.time_up)s;
timeout occurred;

ends

procedure timeout_occurreds;
begin

tep_event.status = FRAME_TIMED_OUT;
(tep_event.layer).timed_out = TRUES
reactivate(top_event.layer)s

ends:

begin

.. starts
end 3

- EMD3

' main bodys;
RINMCILLUDE define_assign.sim
IThiTh »

(tcp_event.layer).timeout_count z= (tcp_event.layer).timeout_count + 1

o
n

! SaNTa CLARA UNMIVERSITY
DEVELOFED FOR MNASA/AMES
MCCZE--854

FERFORMANCE ANALYSLIS OF LAN H
1KoK KK R 4K 2R 0K 3K R R R K K K KR K K K 5K K K K oK K 3K ok e ookt ok s i okOR SR KOKAKOKOKOK 5

! this level inherits the characteristics of
both level 0 and level_1 . It specifies the
exact nature of all entities modeled.

Rk KRR K R AR KK KRR K A oK K KK 3K K K K R A ROKOK R AR K AOK KK KKK KKK KKK K 5

axternal CLASS level 1;

level 1 class level 2(num_of_stations,tau,prop_delay.interrupt_time,
data_rate.dma_xfer rate,aver_arrival_time,
max_frame_size,aver_msg_size,b_interrupt_time,
b_dma_xfer_rate,num_typea_stations);

integer num_of_stationsg

integer tauwg

long real prop_delays

long real interrupt_times;g

long real data_rates;

long real dma_xfer_ rates

long real aver _arrival times

integer max_frame_size;s

i oteger aver_msg_sizesg

g ag real b_dma_xfer rates

long real b_interrupt_timey

integer num_typea_stationsg

REGIN
integer msg_counts ' unique message id number;

RINCLUDE collection_gqueue.sim
ZINMCLUDE rx_host.sim

RINCLUDE tx_host.sim
HINCLUDE tcp.sim

RINMCLUDE ip.sim

ZTINMCLUDE tx__csmacd.sim
HIMCLUDE rx _csmacd.sim
RIMCLUDE channel__csmacd.sim

ref(rx_cemacd) array srx_csmacd(l:num_of_stations)g;
ref(tx_csmacd) array stx_csmacd(l:num_of_stations)j;
ref(channel__cesmacd) schannel _csmacds

REF (tx_tcp) array stx_tep(lznum_of_stations);

REF (tx_ip) array stx_ip(lznum_of_stations)i

REF (rx_host) arvray srx_host(linum_of_stations)s

[7 (rx_tcp) array srx_tep(lsnum_of_stations)s:

REF (rx_ip) array srx_ip(lznum_of_stations);

REF (tx_host) array stx_host(l:num_of_stations);

REF (collection_gueus) collectiongs ! collection queue for networlk;

INTEGER ij

]

REGIN
P odindtialize variabless;

for i = 1 step 1 until num_typea stations do

begin
!' create entitiess
srx_host{i) =— new rx_host("rx_host".i.,
dma_xfer_rate,interrupt_time):
stx _tep(i) :— new tx Ltp(“Lx tep"aia
dma_xfer_rate,interrupt _time)s
srx_topdi) - new rxmtcp("rx“tcp wiln
dma_xfer_ratey,interrupt_time);
sEX_ip(i) i— new rx,_ Aip("rx_AipTaia
dma_xfer_rate,interrupt_time):
stx_ip(i) - new tx _ip("tx_ip".i.
dma_xfer_rate,interrupt_time)s;
arx_csmacd(i) 1 new rx_cemacd ("rx_csmacd” i
dma_xfer_rateyinterrupt_time):
stx_csmacd(i) - new tx_cemacd("tx_cemacd” iy
dma_xfer_rate,interrupt_time)s
stx_host(i) - new tx_host("tx host" .1,
dmamxfer”rate,interrupt“time);
end;

I configure type b stationsg
for i = (num_typea_stations + 1) step 1 wuntil num_of_stations do
hegin
(! create entitiess
srx_host(i) - new rx_host{"rx_ host" i,
b_dma_xfer_rate,b_interrupt L1mu);
stx_top(i) =— new txwtcp("txmch ,i,
b _dma xf@rwrate,b“interruptwtime);
srx_tcp(i) - new rx_tcp('rx top i
b_dma_xfer_rate.b_interrupt_ time)s
srx_ip(i) - new rx_ip("rx_ip".i,
b_dma_xfer_rate,b_interrupt_ time) s
stx_ip(i) 21— new tx_ip("tx_ip".i,
bﬁdmawxfermrate,b_interruptwtime);
srx_cesmacd (i) - new rx, camacd (x| cemacd” 41,
b_dma_xfer_rate,b_interrupt_ time) s
stx_csmacd(i) 3~ new txﬂu&maad("tx“csmacd",i,
b_dma_xfer_rate, b_interrupt_time)s;
stx_host(i) :— new tx _host("tx __ ho*t"..iq
b“dma"xferwrate,hwinterruptmtime);
ends;

for i = 1 step 1 until num_of_stations do
begin

I activate the entitiess

activate srx_csmacd(i)
) activate stx_csmacd(i)
{ activate srx_ip(i) 3
activate stx_ip(i) 3
activate srx_tep(i)
activate stx_tcp(i)
activate srx_host(i)
activate stx_host(i)

AR g

‘a3 ‘sa
'

END g
ENDg

end 3

' declare a channels:
schannel _csmacd 1~ new channel csmacds;

collectiong

mesg _count o

- new collection gueues
1z

Montw e W o ———— 1 111

-

begin

aexternal
HINCLUDE
ZTHCLUDE
HINCLUDE

integer
integer
integer
integer

SANTA CLARA UNIVERSITY
DEVELOFED FOR NASA/AMES
MCC2-554

FERFORMANCE ANALYSIS 0F LLAN

class level 23

prompl_user.sim
read_input.sim

get _taw.sim

nun_of_stationssg
num_typea_stationss
max_frame_sizes;
aver_msqg_sizey

long real prop_delays
long real taujg

long rea
long rea
long rea
long rea
long rea
long rea

(

1 interrupt_timej
1 b_interrupt_times;

1 data_rateg ' data transmission rate,Mbp secsy

1 dma _xfer_ratesg ! data transmission rate,Mbp secssy

1 b_dma_xfer_rates I data transmission rate,Mbp secs;

1 aver_arrival_time j ' mean time belween message arrivals

! get the user inputs
prompt_users

' get the station parameters;

it (num_typea_stations = num_of_stations) then

begin

end
elee if
begin

end
elae
begin

ends;

! T e~

read_input("station_typea”)}:
b_interrupt_time == Q.03
b_dma_xfer_rate = 0.03

(num_typea_stations = 0) then

read_input("station_typeb")s
b_interrupt_time = interrupt_times;
b_dma_xfer_rate = dma_xfer_rates
interrupt_time = 0.03
dma_xfer_rate 2= 0.0

reacd_input("station_typeb");

! save the interrupt time and dma_xfer rale;

b_interrupt_time = interrupt_times
b_dma_xfer_rate 1= dma_xfer_rate;

! get type a input parameters;
read_input("station_typea");

adkem banrsm

"
"

tau 3= get_taus

' gstart the simulations
el _2(num_of_stations, tau,prop_delay.intervupt time,
data_rate.dma_xfer_rate,aver_arrival time,
max_frame_size,aver_msg_size,.b_interrupt time,
b_dma_xfer_rate,num_typea_stations)
begin

ref (message) cur_messages Votest variablesg
long real sim_start _times; U gtarting time for simulation;
long real sim_end times; I ending time for simulations

integer ij
MIMCLUDE print_data.sim

' assign the start timesj
gim_start_time 2= Ltime;

' check for successful messagess
while (collectionqg.total_message success
MIN_NUM_FER_STATION X num_of stations) do
bhegin
hold(10) s
endj

' assign the end timej
sim_end_time = timej

(! collect the datas
collectiong.get_station_datas

! get the network throughputs
collectiong.get_network_data(sim_start_time,
sim_end _time);

! print_datas
print_datas

endg
end

1 sk K A KoK K oK oK K oK K 3K oK K 3K 3K KK oK K K oK K KoK K oK KKK KKK K K KK KR KK KKK KKK K KR KKK KKK K 5

|

! integer procedure get_num_of_stationss
! called by: networlk;

X

! returns the number of stationss

‘s

! globals used: nonej

actions: queries the user for number of stationss

s ‘23 gg W3 gy ST wam

1 3KORK KA K KA K K K K KK K K 3K oK K 3K K KK oK K oK KKK A K KK KoK K KK KRR KKK KK KK KK KKKk 5
integer procedure get_num_of_stationsj

begin

1 get the number of stations;

outtext(" Flease input the number of stations")j
outimages;

get_num_of_stations z= inint;

! SANTA CLARA UMIVERSITY
DEVELOFED FOR MASA/AMES
NCC2-554
FERFORMANCE AMALYSIS OF LAN H

1 3K 3K KKK OK oK K oK K K KK K oK KoK K 3K K 3K 3K oK K oK K KK AR KoK K KK K KK KKK KKK KR AR KR KKK AR AKOK K

procedure read_input

called bya: networ
callss none
actions: reads the data fTor stations

opens and closes the input file

variables used: data_rate,
interrupt_time,
aver_msg_size,
max_frame_size,
aver_arrival_time
(‘ prop_delay

KKK R KKK KK KK K K K oK K 5K K oK oK oK oK K oK K KK oK 3K K K oK KoK KK KK K KKK K KKK KKK KKK KK KKK KK KKK/ 5
procedure read_input(input file);

text input_files
begin
ref(infile) in_filesg

! open the input fileg
in_file ~ new infile(input_file)s;
in_file.open(blanks(80));

' get station datas

data_rate = in_file.inreal; in_file.inimages;
interrupt_time == in_file.inreal; in_file.inimages;
dma_xfer_rate = in_file.inreal; in_file.inimages;
aver_arrival_time := in_file.inreal; in_file.inimages
prop_delay = in_file.inreal; in_file.inimages;
max_frame_size 5= in_file.inint; in_file.inimages;
aver_msg_size = in_file.inint; in_file.inimages

' ¢close the filej
in_file.closes

3R OK KK KK K 3K K K K oK K KK 3K KK K KK K K oK oK K K oK K K KK KKK K K oK oK KK KK KRR KKK K AR KK KKK K 5

' integer procedure prompt users

! called byz: network;

‘A

! returns the number of stationsi

‘a8

! globals used: nonesg

‘a3

i actions: queries the user for number of stationsg

W2 egg ‘=5 g

3K 3K 3K 3K K oK 3K K K K e K K K 3 K oK k¢ 3K K oK oK KK KR KK KK KK 3K KK K K KKK KK KKK KK K KK KKK K KKK 3
procedure prompt _users

begin

integer response;

' get the number of stationss

puttext(” Flease input the number of stations”)j;
outimages
outimage;

num_of_stations = inint;

outtext(" Flease choose station configuration")s;

outimages;

outimages

outtext(” TYFE A TYFE EB")3
outimage;

outimages

outtext(" interrupt time 1.0 0.5")s
outimages;

outtext(" dma transfer rate 40.0 80.0")1
outimages

outtext(" maximum frame size 1500 13500")3
outimages

outtext(” average interarrival time 0.000004 0.000004")5
outimages;

outtext(® average message size 3000 [000")3

outimages
outimages;

outtext("FLEASE ENTER CHOICE")j
outimages

outtext(" TYFE A 1")s
outimages
) outtext(” TYFE R 2")s
L ouwtimages
= outtext(” MIXTURE 3")s

outimages

' get the responsesy
response $= inintjg

) I Y A N . L T 0 et

~gfil

smpunates sinas g ooy S e

if (response = 1) then
hegin
num_typea_stations = num_of_stationss
aend
alse if (response = 2 3 then
begin
num_typea_stations = O3
end
elase
begin
' wants a combination of typess;
' get the number of type A stations;g

outtext(” Please input the number of TYFE

outimages;
outimages

nun_typea_stations 3= inintj

' make sure we got an o.k. numbers

if (num_typea_stations * num_of_stations

bhegin

A stations")s

Yy then

num_typea_stations = num_of_stationss

end :
else if (num_typea_stations < O) then
begin
num_typea_stations = 03
endsj
ends;

! SANTA CLARA UNIVERSITY
DEVELDFED FOR NASA/AMES
MOCCE-554
FERFORMANCE ANMALYSIES OF AN H

B K KRR RO 8 K K oK R K K K K oK K 9k 3K 8 K S K Ok A K K K KK SKOK K 3K 3 ok kR koK R K sk ARk K R KoK K KR K

procedure print_data

called bys network
callss: none
actions prints the data for stations

and networks
opens and closes the output file

variables used: collection_gqueue variables

K 2k ok kK oK K KOk ok 2k Sk 3k Kok K bk 3 Kk ook K R A IR OK K OK K R K ok K kR kRO KK RO KKK AR KK KKK/ 5
(rcedure print_datag
begin

ref(outfile) out_ filej

' open the output fileg
out_file z- new outfile("output”):
out_file.open(blanks(80));

! print station datasj
out_file.outtext("station # ")j;
out_file.outtext(" throughput "Js
out_file.outtext("aver delay / frame ")
out_file.outtext("success ")3
out_file.outtext("reiect “);
out_file.outimages

for i 2= 1 step 1 until num_of_stations do
begin
out_file.outint{(i,.5)s
out_file.outtext(" ")i
out_file.outreal{collectionqg.throughput(i), 10,20}
out file.outtext(" ")g3
out_file.outreal(collectiong.aver_delay _per_frame(i),10,20);
out _file.outtext(" ")
, out_file.outint(collectiong.message_success(i),.%5)s
N out _file.outint{(collectiong.message_not_sent(i),8);
out_file.outimages;

end 3
' oprint the network characteristicss
out_file.outtext(" network_throughput = ")j

out_file.outreal(collectionq.network _throughput,i0,20);

-k LY . P A

N

endy

out_File.outtext(" aver_delay_per_frame = ")
out_file.outreal(collectiong.network _aver delay,10,20)3
out_file.outimages

out_file.outtext(" simalation time ")j

out_file.outreal ((sim_end_time — sim_start_time),10,20)3
out file.outimages;

V close the fileg
out_file.closes

13K K KK R KK A K K K 3K oK ok K oK Rk R K o K KK 3K oK 3K K K oK K oK oK K o ¢ ¢ K K K K KK K KKK K HOKRKRKSKOKR KKK KKK K 3

I w
- "

' long real procedure gel_taus
! called by: networlk;

i

! returns taus

! globals used: 3
! long real max_net lengths
! long real prop_delays

‘Az

! actions: calculates taug

!2

1 sk ok oK ROK K K K b e oK K 3K 98 8¢ 8¢ o oK o o o A ok oK K B o Kk K K K K 5K 5K e ok e ok oK oK R sk KK K K KKK KKK K XK K HOKOK 5
long +real procedure get _tau;

hegin
long real max_net length;

' assign variabless
max_net_length = 2.5; ' max length of networlg

get_tau 3= max_net_length X prop_delays:

ends;

13k ok oK KKK KK oK KK K 5K 3K K oK K 3K K K oK K oK 3K 3K KoK 3K 3K oK 3K KK A KoK SRR KK KKK KK K KK KK K KKK K R KKK KK KoK

AEAD CLASS collection _gqueus

defines the queue used to collect data

called by: level 2.sim —~ allocates collection queue
tx_toep.sim - puts messages into queue

calls: none

actions: defines collection queue

initializes collection gueuwe variables

3K KK oK K oK 3K K KK KK K oK K KK oK K oK K oK K oK K 3K oK oK KK 3 oK A K KK K KKK KK K HOKOKOK KK KK AKOK K AR HORAHOR KKK K 5

HEAD CLASS collection_gueues

BEGIM

integer
integer
integer

integer

integeyr

array total_num_of_bytes(l:num_of_ stations)s

I total num_of data bytess
array total_num_of_messages(linum_of_stations);

' total num _of data messagess
array total_num_of_frames(lsnum_of_stations)s;

1 total num_of frames sant;
array message_success(l:num_of_stations);

! pumber of messages successfully

receiveds;

array message_not_sent(l:num_of _stations);

' pumber of messages not sents

long real array total_through_time(linum_of_stations);
' total time traveling throughs
long real array throughput(iznum_of stations);
I total # bytes / total time j
long real array aver_delay_per_frame(l:num_of_stations)j
! total time per message / total # frames
long real network throughputs
long real network_aver_delays;
integer total _message_success;

integer

i3

“INCLUDE collect_data.sim
HINCLUDE get_station_data.sim
LINCLLUDE get_networlk _data.sim

!' main bodys

! initialize variables;

for i:= 1 step 1 until num_of_stations do

begin
total_num_of_bytes (i)
total _num_of_messages(
total_num_of_frames(i)
message_success(i) =
total_through_time (i)
throughput(i) = 0.0;
aver_delay_per_frame(i)z:= 0.03

u O

w O P
[T LR |
i

<

N O i om

< a8

a1 (o]
a2z

ends

¢l

networlk_throughput z= 0.0
- a3 A

memkiamwls acme Al ws

tl

o

1 3K K KK K 3K 3K K oK K oK K K K A KK oK K oK K 3K K 3K KKK K R KKK KKK KK KK K KK KKK KR KKK KKK KKK K 5

[
B
i integer procedure get -frames_ per_messages;
' called byr collect datas
E
! returns the number of frames per messagesy
'3
! globals used: message.byles;
" E
! actions: caloculates frames per massages
‘s
Iw
f'n
s
1w
'
[
n
1w
'
1w

"

13 ok 55 K 5K K ok oK K K oK oK 3K K K KK K K K K KKK K K KKK A o oK K K K 3K K R K K oK K KK KK KKK K K KKK KKK AR XK
integer procedure get_frames_per_message(num_of bytes);

integer num_of_bytes:

begin

integer bytes_remainings

integer num_of _framess

' initialize variabless
bvtes_remaining = num_of_bytes;
num_of_frames == 03

—

while(bytes remaining > 0) do

begin
Vodncrement frame countg
nun_of_frames = num _of frames + 13

! decrement bytes_remainings
bytes_remaining := bytes _remaining —
BYTES_FER_FRAFME;
end;

get_frames_per_message = num_of_frames;

endsy

15k ok K KK KK K 5K K oK 3K oK oK K K K K AR K oK oK K oK KK K K K K KKK K 3K oK K 2k K KoK KoK KK KR KKK KK KK 3

1 u
N procedure collect_ datas

! called by: collection_queue 3

g

! collects station data for messagess
'y

! globals used:s 3

! message..createtime;

! message.donetimes;

! message . total timesy

! message.reiecteds;

! dataunit.byvtess;

I:i

! actions: collects data statistics for messagess
! sets msg.tine per _messages

! collects time per stations

! collects frames per stationg
! collects the B of useful bytes (data bytes)i
! per stationg

'

I n

- a

I w

-8

U

- ou

I n

b

[]

. N

|

- n

rs

('k**;
mocedure collect_data(cur_messaqge)s;

ref (message) cur_messages ' current message examineds
hegin

S IMCLUDE get_frames_per_message.sim

“INCLUDE inc_message_count.sim

' did we gel a messages;
if (cur_message =/= none) then
bhegin
! do we have a data messages;
! if so, collect datag
if (cur_message.type = DATA) then
begin
' was this a successful transmissiong
if (cur_message.donetime - 0.0) then
hegin
if (not cur_message.reiected) then
begin
' collect datag

' increment the message countj
inc_message_count(cur_message.source_addr)s

' get the time it took to send the messages;

cur_message.time per_ message =
cur_message.donetime -
cur_message.createtimes;

' add it to sending station time;
total_through_time(cur_message.source_addr) z=
total_through_time(cur_message.source _addr) +
cur_message.time_per_message §

! increment the number of messages;
totalwnum“of_meggageg(cur"message.sourcemaddr) u =
total_num_ofmmessages(cur_mea%age.ﬁource“addrj
+ 1z

I collect the number of bytes;
total_num_of_bytes(cur_message.source_addr) =
totalwnum"of”bytes(cur_message.source“addr) +
cur_message.bytess

! get num_of_frames per message;
total_nummofwframes(cur;message.sourcewaddr):m
totalwnumwofwframes(cur"message.aourcemaddr) +

get frames_per_message (cur message.bytes);

end

else

begin

endj

(

Is

endsy

endy

end;

' take the

message out of the queues

cur_message.outy

outtext("
outimages;

Error in get_data. msg is MULL pointer")s

!**;

i w
-
' procedure inc_message_countsy
! called bys collect_datas
‘s
! returns nones
'§
! globals used: message_SUCCesSS]
i
! actions: increments the number of successful messages
per station. If the number of messages per station
is less than FIN_MUM_FER_STATION, then the total
number of messages per network is incremented.
For the simulation to be successful in
data collection., every station must have a guaranteed
minimun throughput. s
's
P ow
b
|)
K
|
T

1.
!ﬁ

1 3k oK K KK K KKK KK KK 3K K K K KK oK K K K K oK 3Kk 3K K oK 3K KK 3K KKK oK Kk K KoK K KKK KKK KR KR KK KKK K 5
procedure inc_message_count(id)s;

integer ids;

begin

tincrement the number of station messagess
message_success(id) == message_success(id) + 13

' should we increment the net success messages?s
if (message _success{id) <= MIN_NUM_FER_STATION) then

total_message_success = total message_success + 1z

ends

1 KKK KK KK KK K KK 3K K 3k 3K K K KK K oK OK K K KoK K KKK K KK R K KK KKK KK K KKK KKK KKK AOKHOKKK 5
1w

Yo procedure get_ station_datas

v called by: network (call to simulation)i

! collects station data for messagess

‘22

! globals used: 3

! total _times;

! total _through_times
! total _nun_of_bytess

! total_num_of_messagess;
! dataunit.bvtess;

! actions: collects data statistics for messages;

! collects time per stationg

! collects the ¥ of useful bytes (data bytes)i
! per atationg

‘=2 gz ‘S5 g 'S3

LY T

]
1 3Rk oK oK K KK 3K 3K 3K K AR K K KK KKK oK oK 3K K KoK K K KK KK KK KK KA KKK KKK AR KKK KKK K RO KK 5
procedure get_station_dataj

{ n

integer i3

! loop through the stationssg
for iz= 1 step 1 until num_of_stations do

begin
'check for zero divides
if (total_through_time(i) < 0.0) then
begin
' calculate the throughput for this stationg
throughput(i) == total_num_of_ bytes(i) /
total_through_time(i) 3
' calculate average delay per frame for this stationg
aver_delay_per_frame(i) == total_through_time(i) /
total_num_of_frames(i) H
endy
endsy

¥ o4 AR KOK 3K ok oK oK oK oK oK 3k K 5K K K KKK KK AR KK K A OK K K K KKK KK KK K K oK KK KK A KR KK K AR KKK KK §

T

- "

' procedure get_network _datag

! called by: network (call to simulation)j

! collects station data for messagesy

Vs

! globals useds 3

! network _throughputs

! calculates network time from sim_end — sim_starts
- ’

! actions: collects data statistics for networls
! caloulates throughput per networks;

! calculates average packet delay per networlks
'3

b ow

'

iw

''s

1w

-9

1 =

-

I'»

'n

1l o

1 SRR KR KOK AR K K KKK KKK 3K oK KK K oK oK K K ok o ok K o 3K K 3K 23k ok oK oK KoK KK KK oK K K KoK K KR K KoK K KKK 3
procedure get_network_data(sim_start_time,sim_end time);

long real sim_start_times ! gtarting time of simulations
long real sim_end timej; ! ending time of simulationg

begin
_ ' collection variabless
(: integer net_total_num_of_bytes; ! total num_of data bytes;
long real net_total_through_timesj
long real net_total _aver_delays;
long real throughputs;
integer i

' dinitialize variabless

net_total_through_time:= sim_end_time — sim_start times;
net_total_num_of_bytes:= Oj

throughput == 0.03

net total_aver_delay = 0.0

! loop through the station collection quaues
for i = 1 step 1 until num_of_stations do
begin
1 collect the number of bytess:
net_total_num_of_bytes = net_total _num_of_bytes +
total_num_of_bytes(i);

! collect the average delay per framej
net_total_aver_delay = net_total_ aver_delay +
aver_delay_ per_frame(i);
endg;

' rcalculate the throughput for this network;

if (net_total_through_time < 0.0) then
begin v
network_throughput = net_total_num_of_ bytes /
net _total _through_time 3
ends

! calculate mean delay per frames;
- ’ e e desmbk a T mr e P R L A VY o W . § b

beaegin
network_aver_delay := net_total_aver_delay /
num_of_stations 3
end j

and s

i
]
]
i
¥
!
]
i
1
I
]
1
1
!
I

a

=
n

TX_HOST —

SanMTa CLARA UNMIVERSITY

MCC2-554

FERFORMANMCE ANALYSIS OF LAN H

transmitter host

STATES: Mot Applicable

Actions: Use station statistics to generate the arrival and lengths
of new messages. The messages are put into a host message

queue and the corresponding TCF layer is notified (activated)
to allow action if its state/buffer permits.

Globals Used: U - the random seed number used as input to all random

History
1/11/89

1/19/89

2717789

number generations.
message_count — unigue id numbetrs for the messages, for
tracking and debugging primarily.

mhall change random number generator
from Fandint to negexp

mhall put a check for
MAX_MESSAGE _COUNT before
creating message. keep track of
reiected attempts when queue is
full

mhall changed code to use
aver_msg_size

sz 'Sd xz &R

23 g A

‘3R WE Az

e v s e e v e Y T e o e o e e SIS ——— - —— oo e s 2040 8858 e e e s e ot S e PORS TYR Fn SeRe T See ey (e R PSR TS S ST e S8 S SO ey s o e e)

host CLASS tx_ _hosts
BEGIN '
long real arrival _timej ' time until arrivals
integer message_status;

procedure generate _messagess

begin

I generate arrival of a message H
arrival _time = negexp(aver_arrival _time, w)s;

hold(arrival_time): ! no action until message arrival time

1 can we generate another message;
if (msg_queue.cardinal < MAX_HOST_MESSAGE_COUNT) then
begin
' create and initialize the new message H
host_msg - new messages;
host_msg.createtimes= TIME;

host_msg.id 1= msg_countsy

' this parameter is used primarily to allow
' for tracking of messages, a unique id#

memrm ik wee e et 3 1w

n
B
o
1

Ay

1 assign source and destination addresss
host _msg.source_addr == id;

 get a destination other than itself;

host_msg.dest_addr 2= randint(1. num_of_stations, wls

while host_msg.dest_addr = id do

bheqgin

host_msg.dest_addr =
randint(1, num_of_stations., wWw)s

and §
host_msg.type = DATAj;

! get a size for the message;

1 host_msg.bytes = randint(minbytes, maxbytes., u)s:

host_msg.bytes = aver msq _sizesj

' into the message queues;
host_msg.Into(msg_queue);

end
else
begin
' keep track of the ones that don’t get ing
collectiong.message _not _sent(id) ==
collectiong.message_not_sent(id) + 13
end g

ends
begin ! this layer doesn’t passivate on initializationg

msg_queue - new message_gueua("tx _host");

! et characteristics of station messages;
tif (id <= (num_of_stations/2)) then

begin
minbytes = 503
! maxbytes 3= 1303
'end else begin
minbytes 2= 8000;
! maxbytes z= 100003
'ends
while TRUE do ! generate messages forever j
begin
! generate messagess;
generate_messagess
if stx_tep(id).IDLE then
begin
activate stx_top(id)s
aendy
hold(interrupt_time)s
= end——of-—whiles

end s
EMD 3

! saMTA CLARA UNIVEREITY
DEVELOFED FOR MASA/AMES
MCC2-0554

FERFDRMANCE AMALYSIS OF LAN H

"
n

RX_HOST — receiver host H

STATES: FREE. RECEIVING

I
i
i
]
i
L
¥
!
]
1
1

Actions: FReceive a completed message from the TCF layer. Delay to 5
simulate the DMA transfer of data. Reset to be ready to 5
receive the next message. H
"
1 e e e e e e o e e e e o e o e S e e e e e e e
host CLASS rx_host;
BEGTIN

procedure dma_transfer(no_bytes);
T oece e oo e oo oome vee wes s w5 Frre PR S ety £ oo row S S40m wvTE 4448 L4VS S0 S02% S Sowm ee Y 4098 S SreS SPES TovR Sere P S50% e £FSE PN SPEY T Tk 498 BHSE PORY ST NI Y 4TS T T S T o s oo ooey Sh e

' procedure dma_transter H
1 w
' This procedure executes a bold to simulate a dma transfer.é
I It used the number of bytes passed to it to determine the 3
f actual lenght of the heold. H
! Globals: dma_xfer_rate é
1 R e e e vt moe eme Tere T o St Y v TS SAEE FrSe Py Seed v T a0 Sev e e T oot i ere B
. 1

integer no_bytes:
begin

hold(no_bytes X 8 /dma_xfer_rate)s;
end;

boolean procedure receive(recvmsg)s;

REF (message) recvmsgs;

bhegin
recvmnsg . INTD(msg_queue) s
dma_transfer(recvmsg.bytes);
receive = TRUE;

ends

hegin P RX_HOST MAIN 3
! initialize the rx_host entity
mag _queus i— new message_queue("rx_host")3
host_msg :— new messages;

Al

! passivate after creations
passivates

while TRUE do
' loop until the simulation ends
hegin

if {(msg_queue.EMFTY) then
! no action required, do nothing

Mrmrman

endsz

passivates

end

@lse

begin

' message queue not empty, begin procesasing
state = RECEIVING;
! receive a message from TCF layer
host_msg 31— msg_quene.5UCsH

if (host_msg =/%= MNONE) then
T NOME test to avoid runtime errors
hegin ’
F gimulate processing Lime
hold(interrupt time);

state 1= FREEj;

' remove the message from the

host _msg..0QUT;

! digcard the message
host_msg - MOME;:
ends;
endj
endg

END++of++irx _hosts

e L e

! SANTA CLARA UNIVERSITY

DEVELOFED FOR NASA/AMES

NMCC2-334

FERFORMANCE ANALYSIS OF LAMN

' TX_TCF.SIM ~ used as include file in TCF.SIM

1

i TX_TCF — transmitter tcp
]

! STATES: FREE. SENDING

i

i Actions:

:

top CLASS tx_tcps

BREGIN

REF (buffer) ackqgs
REF(message_queue) host _msg _queusas;
INMTEGER rcgj

EOOLEAN aclk_to_send, piggybacks

/

procedure dma_transfer(no_bytes);

! procedure dma_transfer

This procedure executes a hold to simulate a dma transfer.
It used the number of bytes passed to it to determine the

¥
1
!
U actual lenght of the hold.
b}
1

Globals: dma_xfer_rate

Fetch message from host message queue, packetize,
add to buffer, send the message.
Send acknowledgments, and piggybacked data/ack frames

T ceev e vmm S Sren s ot oot ot wen 5 SRR e e vt P PR Pt T R S P e ST S Yoy FYTY ST Yoy Py TS TR 2507 S S $55 Seey pevy v vy moew Sae Sy oo eve booy S ooee 00 ren

e T ey

— e — . =" TS as Ty m—— v v SVSS v Sene

integer no_bytes:
begin :

hold(no_bvtes X 8 /dma_xfer_rate);

end;

procedure packetize(msg):
REF(message) msgj

! This procedure divides the message referenced by MSG into frames.
The frames are put into the tcp buffer by the netservice level
The final frame is marked by setting the FIM bit.

procedure RECEIVE.

reserved for the entire message size.

]
!
' This procedure is called only after space within the buffer has been
i
1

packetized.

"
L

K LI]

Mz ‘A8 gz 22 cag SN

' Flags used to determine thes
' next action within the maing
! loop of the tcp transmitter:

am ‘a1

% cag NI a3 ‘AY -ag E@

A partial message will not be

o v s e sy o e v o e onet v aze.

hegin
REF(firameunit) tcpframes
integer temp, msg_sizej

4 wx= =

“xg AN <a% ‘A% cz3 ‘A8 ‘3z At

rarintar For mimhar o f Framao .

begin ! divide the message into frames
temp == msg.bytess
msg_size 2= max_frame_sizej
while temp * O do

w
L

begin I copy info from message to frames

tcpframe 1~ new frameunitsy
topframe.id = msg.ids
tcpframe.bytes = msg_size;j
tepframe.dest _addr 3= msg.dest_adders
tepframe.source_addr 3= msqg.«source_addry
topframe.type = DATAj;
tcpframe.seqnum = msg_size X 13
tepframe.msgptr 5— msg;
if tocpframe.seqnum == msg.bytes then
begin 1 last frame in the message
tepfirame.fin 1= Trues ! gset the Finished bit
tepframe.bytes :=temp;
tcpframe.seqnum = msg.bytess
if (tcpframe.bytes < é3) then
begin ' minimun frame size is 65 bytess
! adiust bytes & segnum H

a2y A3

tepframe.bytes = 630

tepframe.seqnum = hsg.bytes + (65 — temp)s

end;

buf.msgtailz—tcpframes; ' gset pointer to end of message 3
end 3
temp = temp — msg_sizej ! calculate bytes left in messages;
return_code = receive(tcpframe)s; I call routine to put frames;

! into transmittor buffer &
i = 1 + 13 ! increment frame counter i
ends

end;
end——of-—-packetizes;

procedure ack_message(ackframe);

REF (frameunit) ackframes;

T e emve e s e e e 3 e S e 4o . s P S e e PO S U S P e O S TS P T SRS PR e T G S SRS S e o S e e e . e e o e St T T e £ e e veen ne T
ack_message(ackframe)
processes the receipt of an acknowledgement
- updates the window
- removes fTrames from buffer when last frame acknowledged
- sets donetime of message

assumptions:

- one message in the buffer at a given time

o dem fE sem W e e

begin
REF(frameunit) tempframes;
REF (message) msgptrs

if win.state < EMPTY then ! if the window is empty, any ack that
! received will be ignored
begin
tempframe - win.frontsg starting at the front of the window,
search the frames in the window for
frames that have a segnum less than
or equal to the acknum, remove those

frames from the window.

while tempframe=/=NONE
and tempframe.dest_addr&ackframe.source_addr
and tempframe.seqnumi=ackframe.acknum do

Birmurm i w

‘35 ‘&% a3 CAE ‘a1 CAd ‘a3

aa

P TR 1

Az gy AR ‘33 ‘A€

——

L r ¥

kill_timer(tempframe); ! cancel the timer for the acked frames
' adiust the window size H
win.cursize = win.cursize — tempframe.bytess
if tempframe.fin then ! when the last frame in message H
begin ' remove the message from buffer H
msgptr - tempframe.msgptr;
win.front :~ tempframe.SUCs
if (outofbuf(tempframe.id) = 0OK) then
begin ' Mark the message with current time

' indicating the time the message
I acknowledgement was received. Call

! for data collection.
if (set_donetime(msgptr) = 0K) then

begin]
I get the data from this successful messages
collectiong.collect_data(msgptr);
ends;
end s
if win.front==NONE then
begin

win.reset_windows;
goto Break;
end else begin
win.state := MENF3;
tempframe - win.frontj;
goto Brealj
end s
end else begin
win.front s— tempframe.SUCs
if win.front==NONE then
begin
win.reset _windows
goto EBrealks;
endj
tempframe :— win.frontgs
end:
ends;

Rreal: ! break out of while loop. incase pointer is NULL

ends:
end——of——acks

procedure copyframe(source, dest)s
REF (frameunit) source, dest;

' -— e v et ey ey sem 2428 Saen pwen ous o — ———

This procedure makes a copy of the frame being sent, since SIMULA
will not allow a given Link class object to exist in more than one

To allow the frame to stay in the transmittor’s buffer until it is

]
!
' get (ie. a frame cannot be in more than one buffer at any given time).
1
1

acknowledged, a copy of the frame must be sent.

dest.id = source.id;

dest.bytes = source.bytes;
dest.dest_addr = source.dest_addij
dest.source_addr == source.source_addr;
dest.type = source.types;

dest.seqnum = source.seqnums;
dest.acknum 1= source.acknums;

[PT R PR Tl

1]

‘a3

‘an ‘AM .33 ‘B A= A

dest.fin 1= souwrce.fing
dest.msgptr z— source.msgptri
end;

boolean procedure transmit(frame)s;

REF (frameunit) frame;
b e et e e s et e e o oot e oo e et oo e o e S o e s e 43 S $ o . S S S P e S5 o o S P 54 Y P o 2R e e R e T o S e T o e e S S B S s S v e o e e

! This procedure copies the frame to be sent and calls the IF RECEIVE H
! procedure. If IF receives the frame, activate the IF entity. S
] Y
' Returns: TRUE - frame received by IF H
! FALSE - frame not received by IF H
1 et e oo e e e e et e reee e mre e e s e o5 P P . 2 e o e ¥R e 0 o e e e P R v 8 S48 S P T 2008 T PR e P S T T e e e S A e T e T e e e e
begin
REF (frameunit) sendframe;
sendframe - new frameunits ! create new frame_unit template to send;
copyframe(frame, sendframe); ' copy info from old frame to new CoOpy &
if (stx_ip(id).receive(sendframe)) then
begin
transmit s= TRUEj; U Fframe received by IF, its on its way 3
activate stx_ip(id)s ! IF has something to do, so wake il ups;
end else begin
transmit = FALSEj; ' the frame couldn’t be sent vet H
ends:

end—-—of-—transmitsy

REF(timeout_unit) procedure find_timeouts;

e e e 1000 s s — e v oy . = S S T oS FRa ST S o Ty e PO T SV e

This procedure searches the timeout gqueue to find the frame that
timed out, ie) the frame in which the FRAME_TIMED_OUT flag is set.

‘a3

‘43 a3y A%

Returns: reference to the first timeout_unit found which meets the
condition FRAME_TIMED_OUT, otherwise NOME.

—————————————————————————— H

begin
REF (timeout_unit) current, next;
boolean found;

find_timeout - NOME3j

found = FALSE; ' flag to indicate if timeout was found j
current :— timeoutq.FIRST; ! start at the beginning of the timeoutqs:
while (not found) do
begin
if (current =/= MNOME) then ! gearch until end of gueue H
begin
if (current.status = FRAME_TIMED_OUT) then
begin ' found a timed out frame H

find_timeout :— currents;
found = TRUEj;
timeout_count = timeout_count -1j

end else begin ' didn’t find one., get the next timeout 3
current :— current.SUC;
end;
end else begin ! have searched the entire queue H
found == TRUEj; ! break out of the loop H

timed_out == FALSE}
timeout_count 2= timeout_count -13
end;
end;
if (timeout_count = 0) then timed_out := FALSEj;
end;

procedure update_buffer;

! This procedure updates the necessary buffer

! is transmitted.

lastsent 31— framej;
buf.current — (buf.current).SUC;

end—--update_buffers;

pointers after a frame

boolean procedure receive_ack(ackframe)s;
REF (frameunit) aclkframej

the TCF Receiver.

]
'
1
1
i
1
¥
]
!
!
!

begin

This procedure receives an acknowledge frame for transmission fromn

Comparisons are made to determine:

- if the frame is to be piggybachked
- if an previous ACK for the same message exists and

should be updated to reflect the current status of
the message

queue

REF(frameunit) tempframes;
boolean set _piggybacks

set_piggyback = FALSEs:

begin

tempframe :— lastsent.SUC;

end else begin

tempframe :— NONE;

ends;

- if this ACK should be added to the acknowledgement

Returns: TRUE if the acknowledgment is successfully handled
FALSE if there is an error in the processing

! flag to indicate if piggyback

! option was used

! initialize flag to indicate not used
if (lastsent =/= NONME) then ! NONE test to avoid runtime ervor

' get the next packet to be sent

'check first packet for matching destination
taddress — if match found then piggyback the aclk
if (tempframe =/= MOME) then

e B8 -z &%

‘A% cam 3% -3x ‘@5 @z A0 a3

LR PP TR

‘33 "2 -3z ‘a1

~as

begin
if tempframe.dest_addr = ackframe.dest_addr then
begin
piggyback = TRUEj; ! set flag to show ack piggybacked H
set_piggyback TRUE
tempframe.ack TRUE 3 1 mark frame with acknowledgement info
tempframe.acknum z= ackframe.acknums
endj
end g
if (not set_piggyback) then ' if ack not already piggvbacked H
begin

if (ackq.EMPTY) then

begin

ackframe.INTO(ackq) s

end else begin

tempframe

begin

no ack exist in

otherwise check
queue to see if
existing achk is

put the new ack

the ACKR

into the ack gueue
the acks in the
updating an
appropriate

1~ ackq.SUC; ! get the first entry in the ACKQ
while (tempframe =/= MOME) and (ackframe=/= NONE) do

if (tempframe.id=ackframe.id) and
(tempframe.acknum < ackframe.acknum) then

|

-

*xu ‘AR -ag ‘B0 a3z can

a

tempframe.acknum := ackframe.acknum;

ackframe 31— MNOMNE; ' ack frames combined, discard H
' ack not used H
end else begin ' match not found, look at next ack 3

tempframe 1~ tempframe.SUC;
endj

ends
if (ackframe=/=MOME) then ' no matching ACK found in ACKR 3
begin
ackframe.INTO(ackqg)ds ' put ack into the ack queue H
end;
ends
end §

ack_to_send == TRUEj
receive_aclk = TRUE;
end-——-of-—-receive_ack;

procedure transmit_failed{frameptr);
REF(frameunit) frameptr;

| QR ——— e e - v [—————— PR R PP SR P bbb e

1)

! This procedure removes the entire message from the buffer and window
when transmission at the csmacd layer has failed.

gy 'E3 @s A8 a

- only one message in the tranmission window at any given time

!
!
! Assumptions:
!
!

=

begin
(frameptr.msgptr).reiected := TRUE: ' mark the message as reliected
! this info will be used later
' in the network statistics
return_code := outofbuf(frameptr.id):
win.reset_windows;
ends

=2 At

Az

REF (timeout_unit) procedure create_timeout_ref(timeout_frame);

REF(frameunit) timeout_frame;

| RO R P ——————— RS R P - oo e o mn e

! This procedure creates a timeout_unit for placement into the timeout
queue. It initializes the parameters of the timeout_unit.

Returns: Reference to a new timeout_frame

average of the actual times to send and receive an ACK.
This feature has not been implemented in this version.

— e soem oo o o v v — o — v — [R——

1

]

!

!

1 MOTE: TCF actually calculates the time_up value using a weighted
1

]

|

-ag 'S8 -ag 'A% -a3 ‘23 gz ‘8% -a3 ‘M

begin
REF(timeout_unit) timeouts;
timeout z- new timeout_unitg ! create a new timeout template H
! ijpitialize all of the variables H
timeout.laver :— stx_tcp(id)s ! get reference to the entity H
timeout.frameptr :— timeout_frame; ! set reference to specific frame 3

timeout.time_up = 28000.0;
create_timeout_ref - timeout;
ends;

procedure kill_timer(timeout_frame);
REF (frameunit) timeout_ framesj

b — ——— -— e ——— I MR 4

! This procedure searches the timeout queue for the reference to the

v T T Y e Y Tl Lmermd & Srm mmemmT Vit weml vmmmiimead Fwmm e "

! timeout g-. If it is not found no action occurs. The search ends

! with the first match found. There is only one timeout_ frame for any
! frame transmitted, including any re-sends of the same frame

! for whatever reason.

| JpR—————— — —] e oo e e o v v s e

‘ga "S% gy ‘AL a2y

bhegin
REF (timeout_unit) current; ! pointer to current position in queue;
current - timeoutq.FIRST: ' start at the front of the timeoutq H
while (current=/=NMONE) do ' gearch until end of timeoutq found j
begin
if (current.frameptr==timeout_frame) then
begin ! found timeout_unit for ref frame 4
cancel(current.timerptr)s ! cancel the timeout process H
' using the REF in the timeout_unit H
current.OUT3 ' oremove timeout_unit from queue H
goto Hreak; ' axit the loop H
end g
current 3— current.SUC: ! frame match not found, get next unit;
end j
Breakns
end sy

procedure start_timer(timeout)s
REF(timeout_unit) timeouts;

| [—————— - MY . —— ——— oan e sa4e sesn e e s e e e e e e e e e oo e mee W

! This procedure creates a new process TCF_TIMER to be an independent
! process for the tracking of a timeout. If a timeout occurs the

! independent process will set the necessary flags using the REF s
i
i
]

‘3% g3 ‘A% -3z

that are contained in the timeout_unit. Mo references to the
TCF_TIMER process exist, so that it will be discarded for garbage
collection after it performs its given timeout function.

T v ovon smrm e e 2 v o 2o et Fove e e e Sy e e o S T v —— e e 12t 200t o42t bamm swmm serm [-

‘33 AW eaz

begin
REF(tcp_timer) new_tcp_timers
new_tcp_timer :— new tcp_timer; ! create a new timer process H
timeout.timerptr :— new_tcp_timers;
new_tcp_timer.setup(timeout); ! initialize the timer process H
timeout.INTO(timeoutq): ' put in q (keep a reference to it) 3
activate new_tcp_timer; I gtart the timer H
end 3
begin ! main program portion of tx_tcps:
REF (frameunit) ackframes; ! reference to ack frame used in MAIN;

reference to a message used in MAIN;
reference to a timeout used in MAIN;
parameter used to determine the

REF (message) msgs !
]
!
I gtatus of attempted transmission
1
{
]

REF(timeout_unit) timeoutptr;
boolean xmit_faileds;

if TRUE. the layer passivates
waiting for a state change in an
adiacent layer to retry.

N ‘mg AN 'za ‘A%

xmit_failed 2= FALSE;

ackqg 31— new buffer;

msg I+ NEW Messages;

buf.cursize == O3 ! Initialize the parameters
buf.maxsize = 204803 ! get tcp buffer size for station
buf_space = buf.maxsize;

msg I Nnones

lastsent 31— nonej

piggyback = FALSBE; !' initialize loop flags
ack_to_send == FALSE;

Jommmustmdm mfdmo drmddd w1 mumnd s mm e

passivates;

' assign the host message queue to local pointers
host_msg_queue :— stx_host(id).msg_queues;

while TRUE do ! DO FOREVER LOOF

begin

‘s

while (host_msg_gqueue .EMPTY OR buf.state = FULL)

bexgin

and not (ack_to_send OR timed _out OR next_msg) do
' Nothing to do — passivate

passivate:

end;

if (ack_to_send OR timed_out OR next_msg) then

begin

' perform activity associated with H
' flags in priority order

p* 1

state 3= SENDING;
if (ack_to_send) then

begin

if (piggyback) then ! First Friority - send piggybachk ack

At

begin

end

piggyback == FALSE; ! Reset piggyvback flag
frame :— buf.currents;
if (frame =/= NOME) then ! NOME test to avoid runtime error
begin
if (win.reserve_space(frame.bytes)) then
begin
if (transmit(frame)) then
begin I Frame transmitted, update win & buf
if (win.addto(frame)) then
begin ! Create timeout timer and start it
timeoutptr - create_timeout_ref(frame)s;
start_timer(timeoutptr)s;
update_buffers;
end else begin ! set flag to passivate at end of loops:
xmit_failed 3= TRUE;
end-—-addtoj
end else begin
xmit_failed = TRUE;
end-—transmits;
end else beqgin
xmit_failed == TRUE;
end—-—reserves;
ends:
else begin
ackframe :— ackq.FIRST; I assign a reference to first acks
if (ackframe =/= NONE) then ! NONE test to aviod runtime errors;
begin
if (transmit{ackframe)} then ' zend the acknowledgement i
begin
ackframe.0UT; ! remove the ack from the queue
t if no more to send set flag
' ack_to_send to FALSE
if (ackq.EMFTY) then ack_to_send := FALSE;
end else begin
xmit_failed z= TRUE3:

‘R

xR

a1

a3 'ag A

! Transmit returned FALSE, set the
I the xmit_failed flag so that the
! transmitter will passivate at

' and of this loop. It will be

' activated by IF or HOST when

! pither one’'s state changes.

‘gz A8 gq ‘AT -3z ‘A%

ends

el ATemA bheamas s

il i

if (ackq.EMFTY) then ! verify there are no acks in queuesj

begin i reset the ack_to_send flag H
ack_to_send == FALSEj
andy
ends
end 3
end else begin ! ack_to_send is FALSE, check other flags i
if (timed_out) then
begin
timeoutptr :— find_timeout; ! find the timed out unit from q 3
if (timeoutptr =/= NONE) then
begin 1 timeout unit found,., resend by the frameptr;
if (transmit(timeoutptr.frameptr)) then
beqgin
timeoutptr.status = SET; tatart a new timer for frame;j
start_timer(timeoutptr)s;
timeout_count := timeout_count — 13
end else begin
xmit_failed := TRUE; ! set flag to cause passivate 5
end
end else begin
timed_out == FALSE; 1 No timeout found, reset the flag H
ends

end else begin
if (next_msg) then
beagin
frame s~ buf.currents;
if (frame =/= MONME) then

begin
if (win.reserve_space(frame.bytes)) then
begin ! reserve space in the xmit window H
if (transmit(frame)) then
begin i transmit the frame to IF H
if (win. addto(frame)) then
begin ! officially add the frame to the wing

! create/start the timer
! update the buffer pointers
timeoutptr :— create_timeout_ref(frame);:
start_timer(timeoutptr)s;
update_buffersg
if lastsent==buf.msgtail then
begin ' send only one message at a time H
next_msg = FALSE;
endg
end else begin
xmit_failed = TRUES
win.cancel_reserve_space(frame.bytes);

-3y 4%

ends
end else begin
xmit_failed == TRUEj;
win.cancel_reserve_space(frame.bytes);
ends
end else begin
xmit_failed s= TRUEj
ends
end else begin
next_msg = FALSE;
ends;
end;
ends
end;

[R - Ll oty paad madiP

T e Rt Ve Ve L -

if (xmit_failed) then I Xmit_failed flag indicates that some
! condition exists to attempt a transmit, and
I that the attempt failed. The transmitter
will passivate., waiting for a change in
the conditions., so that the next transmit
might succeed. The loop will be executed
from the beginning after TX_TCF is activatedsj
0 that whatever is highest priority will bes
done first. H

‘33 ‘E2 &3 ‘£ gz 4A

begin
xmit_failed z= FALSE;
passivate;
end 3
end else begin
if (not host_msg_queus.EMFTY) and (not buf.state=FULL) then
begin
state = RECEIVINGj
msqg :— host_msg_queue.SUCH
! add message to tcp buffer only if
' there is room for the entire message

a3

! buf_space indicates space remaining :
if (reserve_buffer_space(msg.bytes)) then
begin
msg.0uts ! Message is taken out of host queue and H
! added to the data collection gueue. H
msg . INTO(collectiong);
' dma_transfer(msg.bytes); ! Mald for dma xfer of data bytess;
(packetize(msg): ! Frepare the msg for sending, add to buffer j
' as individual frames to be transmitted. H
end ;
state = FREE3:
end ;
end;
hold(interrupt_time): ' Hold for tcp processing time,needs refinements;

end~—of-—whilej;

end—-—of-—maingj
EMD++of++TCF 3

o

! SANMTA CLARA UMIVERSITY

DEVEL.OFED FOR NABA/AMES

NCC2-554

FERFORMANCE ANALYSIS OF LAN

' RX_TCF.SIM — used as include file in TCF.SIM

I +eee 1400 smw osvm ces summ e oo wex e v +ven s et POaw o PR P e oS543 S5 G2 TvTS T LAY PvwS Su Sy fee e <o —— vtor svem w22 e S e Faem ey e S e P Ve SV e SR SRV See e {2 TR VST FPEY TOrw i S Save ons Sase

RX_TCF — receiver taop

2z ‘NN gy ER 23

STATES: FREE, RECEIVING

1]

send ACK in response to data message, update parameters in
response to CTRL, pass complete message up to host
NMOTE: For this simulation it is assumed that there is room in the
receiver BUFFER for any arriving frame. The WINDOW size will
be checked for availability.
i — ————— e e e 204 308 2004 anre vms TS SEEN S e S RETY PO Sy T TS ey YT e S8 WA S0 e S e T S P Py s veve Svew v 0wy 3o ose W
tecp CLASS vrx taps
REGIN
REF (message) msgs
Fre(frameunit) summaryptr, temps
{ EGER buf_rc;

‘a3 =% eas

TR L]

I

]

]

t

!

! Actions: receive message from ip, update the buffer,
I

1

]

1

]

RE

procedure dma_transfer(no_bytes)g;

' procedure dma_transfer
‘ .

' This procedure executes a hold to simulate a dma transfer.
' It used the number of bytes passed to it to determine the
! actual lenght of the hold.

]

]

I

Globals: dma_xfer_rate

AN g A% gy AN gy 'SV -3y ‘Ad

integer no_bytes;

begin .
hold(no_bytes %X 8 /dma_xfer_rate)s;

ends;

integer procedure rx_receive(recvframe)s;
REF (frameunit) recvframej

1 et soms men o —— e S s vy -

! This procedure receives a frame at the tcp level. It updates
! window and buffer sizes to reflect the size of the frame
! received.

|
|
|
|
{
|
|
|
|
|
|
!
!
]
{
!
1
!
1
|
|
i
i
|
|
1
|
i
i
1
1
!
1
|
!
1
i
1
!
|
1
1
i
1
i
|

AN ‘gs ‘AW 'ag ‘34

boolean win_rcsg
win_rc == FALSE;
return_code == FAILED;

if (win.maxsize = (win.cursize + recvframe.bytes)) then
begin ' set win.maxsize so never fails for WINDOW too smallg
win.maxsize = win.cursize + recvframe.bytes;

sl o=

B AL T

if (win.reserve_space(recvframe.bytes)) then

begin ' reserve space in the window for the frame
if (buf.maxsize < (buf.cursize + recvframe.bytes)) then
begin ' set buf.maxsize so never fails for RUFFER too

buf.maxsize = buf.cursize + recvframe.bytes +13

end s
win_rc := win.addto(recvframe)s;
buf_rc = receive(recvframe)j;

end else begin
win.cancel_reserve_space(recvframe.bytes)s

end
if (win_rc) and (buf_rc = 0K) then
baegin
return_code = 0OKj
end;
if (buf.current == MOME)}) then
begin
buf.current :— recvframes;
and 3

rx_receive := return_codej;
end——of-—rx-receives;

procedure ctrl_messages;
begin

1 e come o e v v e e e s e s e e e R ot e e e e e e et S S P e P S et S et o ———

! This procedure can be used as a starting point to implement th
' control messages of TCF.

J— - ——— e o e e e e e o e e s

end——of-—ctrlj

procedure reassemble_messagesj

smalls;

2 ‘A% 33 A

' This procedure creates a new message and copies all of the
4 information from the summary frame to the message preparing to
! pass the message up to the host.

begin
MSg I— New messages ! create a new message and copy info
msg.id 1= summaryptr.id; ! from the summary trame

msg.dest_addr == summaryptr.dest_addrs;

msg.source_addr 3= summaryptr.source_addr;

msg.«.bytes 1= summaryptr.bytes;
end—-—-of--reassemble_messages;

ref{frameunit) procedure get_summary_ frames;

K1

‘A E¥ a3

'mg ‘At

! This procedure returns a frame pointer to the first frame

! found with the same message id number (id). Since the

! buffer is FIFO, the first frame reference will be the

! considered the summary frame and will be updated with the

' receipt of additional frames of the same message to reflect
! the status of the message. Mon-contiguous frame will
! exist as separate units within the buffer.

REF (frameunit) bufptrg
bufptr z— buf.FIRST: ' start at the beginning of buf
while (bufptr =/= NONE) do I gearch to end of the buffer
begin

if (frame.id=bufptr.id) then ' matching frame found, assign

5 . -t s o AT s s - —e e n d

@y 'S8 cax CAE gy A% -gzz ‘KN ‘X3

TR 2

P N S

end

get_summary_frame :— bufptrs;
go to Ereal;
end else begin
bufptr z- bufptr.SUC; ' no match-check next buf entrys;
end §
ends
Rreal.:
~—get_summary_Trames;

integer procedure last_contiguous_bytes

1

This procedure will search through the buffer updating the summary
frame until no more updates are possible. The buffer pointers are
updated and combined frames are removed from the buffer.

Returns:
Integer value of the highest contiguous byte received

'qs AR c3g ¥ g3 ‘AD -az AN

integer last _bytes;
boolean updateds;
REF(frameunit) bufptr, tempptrsi

last_byte 3= 03 I set last_byte in case first frame not received
updated = TRUE;
while (updated) do

A

begin ! search the list again after each update, until no more updatess

bufptr :- summaryptir.SUC; ! start search after the summary frame
updated == FALSEj;
while (bufptr =/= MOME) do ! search until the end of the buffer
begin
if (summaryptr.id=bufptr.id) then
begin ! the frames have the same id number
if (summaryptr =/= bufptr) then

"
=

begin ' the pointers point to different Framessy

if (bufptr.segnum= (summaryptr.bytes+ bufptr.bytes)) then
begin ! contiguous frame found, combine them
summaryptr.seqnum = bufptr.seqnums
summaryptr.bytes == summaryptr.bytestbufptr.bytess;
last_byte = summaryptr.bytess;
summaryptr.fin 2= bufptr.fin;
updated == TRUE;
end;
endj
ends
if (updated) then
begin I update the buffer pointers and remove the frame
I that was just combined with the summary frame
tempptr =— bufptr;
bufptr s— bufptr.SUCH
if (tempptr==buf.current) then
begin
buf.current:—(buf.current).FREV;
endsj
tempptr.OUTS
tempptrs— NONE;
end else begin
bufptr z— bufptr.SUCH
ends;
end—-—-whileg
end-—-whiles;

P .3 I o

—— omme aem e L S — s = seee sem ki Fa mmi T N [N SR

R 1

n
"

R AL L I A I L e i A A AR A et o TR

begin
last_byte = summaryptr.bytess
end;
last_contiguous_byte := last_bytes
end——of--last—contiguous—-bytes

procedure acknowledge(aframe)s
REF(frameunit) aframe;

! This procedure creates an acknowlegement for the last contiquous
! byte of the same message as the frame received. The ACK is put H
! into the acknowledgement queue of the transmitter. H

e P ————— et e oes e v e S e e S S ST TV T Tov® e P St vy et P P 0% e Paam e e T S S w0 Bt e o man e v T

ref(frameunit) ackframe;
ackframe :— new frameunit; ! create new frame for the achk H
ackframe.dest_addr := aframe.source_addri ! initialize the frame]

ackframe.source_addr := aframe.dest_addrj
ackframe.id 3= aframe.idj;

ackframe.ack = TRUE3:

ackframe. type 3= ACKj;

ackframe.bvtes:= 653 I set ack bytes to minimum packet size 3
ackframe.acknum 1= last_contiguous_byte; ! find the byte to ack]
ackframe.setwindow 3= buf.maxsize — buf.cursizesg

if not (stx_tcp(id).receive_ack(ackframe)) then

begin

endsj

activate stx_tcp(id)s:
end——of—-—-acknowledge;

DRKKKKKKK RX_TCF ——— MAIM RKKKKKKKKRKAK KKK KKK KKAKAK KK KKK 5
begin
buf.cursize = 0Oj
buf.maxsize == 10240; ' get tcp buffer size for stationg

' info set up in a file7?;
passivates;

while TRUE do

begin
if buf.current =/= NOME then ' frame to receive in buffer, start 3
begin ! the receive process H
state 3= RECEIVING;
frame =:— buf.currentsy

' control not implemented - 12/88
if frame.type = CTRL then ctrl_message;
' pass ack info to tx_tcp for updates
if frame.ack then stx_tcp(id).ack_message(frame);
! receive data information
if frame.type = DATA then
begin
!' Find the summary frame for message,
' should return a pointer to the 1lst
! frame found for the same message.
! Either a previously received frame
! or the current frame if no previous
! frame exists should be returned.
summarvptr i~ get_summary_ frames;
if (summaryptr==NONE) then ! debug message
begin

- ’

KE -Aa

‘gz ‘21 +3g "Af -3z ‘&6

endj

acknowledge(frame)s;

' remove frame from receiver window §
return_code := win.rxtep_outof(frame);

if (

if (

buf.current=/=NOME) then
buf.current - (buf.current).5UC;

summarypltr =/= NONME) then

begin
if (summaryptr.fin) and

(Summaryptr.bytesxsummaryptr.ﬁeqnum) then

begin

1 last frame. message complete H
reassemble_message s

lsend message to the host H
while not (srx_haost(id).receive(msqg)) do
begin

if(srx_host(id).idle) then
activate srx_host(id)s;
passivates;
end3;

dma_transfer(msg.bytes)s
activate srx_host(id);

'remove frames from buffer 3
return_code = outofbuf(summaryptr.id);

ends;

ends}

end
else
begin

' update buffer for CTRL or ACK frames H

ends;
end
else
begin

' no frame to receive, passivate

return_code := win.rxtcp_outof(frame);
temp - frameg

if (buf.current=/=NONE) then
buf.current 3- (buf.current).SUCs

if (temp=/=NONE) then

begin
buf_space = buf_space + temp.bytessy
temp.0OUT;
temp z— MOMNE;

ends;

state = FREEj

activate srx_ip(id)s

passivates
end-—of-—ifj

firame - Mones;

! gsimulate processing time with hold
hold(interrupt_time);

B

(SRR R A) R Y1 LB

end——of—-—mainj
END++of++RXTCF 3
(,/

-

o

! SANTA CLARA UNIVERSITY
DEVEL.OFED FOR NASA/AMES
NMCC2-534
FERFORMANCE ANALYSIS OF LAN H

I IF.SIM — used as include file in level 2.5IM H

RX_ IF - IF Receiver

‘A8 g ‘A% -am

ACTIONG Receives a frame pointer (REF) from its station’s
rx_cemacd layer, calls the tcp receive function
RX_ RFCIIVL to put the frame into rx_tcp’s buffer.

l
I
l
' STATES: FREE, RUSY
l
I
|
l

ip CLASS rx_ips

begin
passivates; ' initial startup wait state H
while TRUE do
begin
while frame==NONME do ! if no frame then do nothing H
beqgin
state := FREE3j;
activate srx_csmacd(id); ! give dependent layer a H
i chance to react to state change 3
(passivates;
ends
if frame=/=NOME then ' frame received from csmacd H
begin
state := BUSY;
return_code := FAILED; ! initialize value of return_code j
while (return_code = FAILED) do
hegin ! lpop until TCF receives the frame j;
return_code = srx_tcp(id)..rx_receive(frame);
if (return_code = 0K) then
begin
activate srx_tcp(id);
frame :-— NONE;
ends
if (return_code = FAILED) then
begin
activate srx_tcp(id)s
aend;
endj
frame 31— MOMEj; ! reset the ip receiver parameters j
state 1= FREEj;
ends;
hold(interrupt_time); | gimulate the processing time of IF;:
end;
ends

an

TX_IF - IP Transmitter

STATES: FR&C SENDING READY

A AT PR Lo} - - P T 7T N P - 2L PR R R

- aem Cem qam
1 'ag B8 -2y

B eas e e 003 o0 e e o 5w ey e w6 S0 S0 0w S s v $40w Frwy $H0% PO T v ey vy reey - e e sovs et S0 e o v

tx_tcp layer, calls the csmacd receive function
to put the frame into tx_csmacd’s buffer.

R LA

=1

7 CLASS tx_ips
begin

procedure reset_tx_ips;
begin
frame =- MONME;
state = FREE;
ends

procedure transmit_failed(frameptr);

REF(frameunit) frameptir;

begin
stx_tcp(id).transmit_failed(frameptr)s

end;

begin

end;

passivates;
while TRUE do

begin
while frame==NOMNE do ! gstate = FREE., no frame to sendj;
begin
passivates;
end;

' state = READY. have frame H
! state set in receive procedures
| . — - — e -— f— - -— — — — - -— — —
! Attempt to pass frame to csmacd, if attempt fails then
! passivate... will try again when activated by csmacd or
! tcp. Will not succeed until csmacd actually receives the
! frame. :
| - - —— - -— -— — - — - — — - — — —
while (not stx_csmacd(id).receive(frame)) do
begin
passivates
ends;
state 1= SENDING;
if stx_csmacd(id).IDLE then
begin
activate stx_csmacd(id)s;
ends;
reset _tx_ips;
activate stx_tcp(id);

frame passed to csmacd - reset
Give TCF a chance to react to
IP state change.

simulate processing time

hold(interrupt_time)s
end—-—while——true-—dosj

end++TX_IF;

‘ag M8 g A% 'zg ‘A

gy AN gy ‘Ad

i i

! SANTA CLARA UNMIVERSITY
i DEVELOFED FOR NASA/AMES
NMCC2-554

FERFORMANCE ANALYSIS OF LAN 5
1 3Kk KK KK KK oK KK K HOKAK KA K KKK K oK K K KKK AR K KKK KKK KKK KKK KKK KKK KKK K 3

]
!
! process class tx_csmacdg
1
]

substructure of: class protocols

]

! calls: (state routines)3

! cemacd_txs_acquire channel
1

1

]

cemacd_txs_attempt_tx H
camacd_txs_idle 3

camacd_txs_wait_for_ re_tx
camacd_txs_disabled H

returns: none §

]

]

]

!

! globals used: 3
! loops on state and change_status.:

! this indicates if a change of state hasg
! occurred.;

1

{ actions: mimicks the transmitter of the csmacd 3

kKKK AR K KKK KKK KK KKK KK K KKK KKK K KKK K KKK KK KKK KKK AR KKKk Kk KKKk 5
! declare entities for the csmacd layers

csmacd class tx_csmacds;

begin
! attributess
integer ngj ' num of transmission triess
long real tx_delays; 'transmission delays
long real total_delays; ' total delays

' state routines;
! determine if a transition will occursg
! return a boolean true if transition occursg

1 files that contain the state subroutines and specific proceduress;
RIMCLUDE csmacd_txs.sim
“INMCLUDE csmacd_tx.sim

! main bodys
hegin

L ! initialize attributess
- n = 03

! loop forevers;
while true do
begin

{

if ((not change_state) and

beqgin

end
else
begin

! reset

{ not buffer_interrupt)) then

passivates
change_state 1= true;j

the transitiong

change_state = falsej

! identify the state;
it (state = DISARLED) then

hegin

change_state ==

end

else if
begin

end
else if
bhegin
end
else if
begin
end

else if
begin

cemacd_txs_disabled

(state = WAIT_FOR_RE_TX) then

change_state ==
cemacd_txs_wait_for _re_tx;

' have we walted max triess
if (not change_state) then
hegin
! reset the variablesj
reset _tx_csmacds

! wake up ips;
activate stx_ip(id);
endj§

(state = FREE } then

change_state =
csmacd_txs_idle

an

(state = ATTEMPT_TX 3} then

change_state =
cemacd_txs_attempt_tx 3

(state = ACQUIRE_CHANNEL) then

! get the frame to j

' gend from the buffers

frame -
get_frame_from_buffers;

' if we got the frame j
! send it on j

if(frame =/= none) then
begin

change_state =

cesmacd_txs_acquire_channel (frame):

I tuales tim im afrowr beranemismesimnne

if (change_state) then
begin
! calculate total delays
total delay =
prop_delay + tx_delays

! activate the csmacd_rxs3
activate srx_csmacd(frame.dest_addr)i

ends
ends

! reset the flags;
reset_tx_csmacds;

' wake up ip lavers;
activate stx_ip(id)s

end

else

begin

outtext(" FERROR IN IDENTIFYING C_TX_STATE");:
outint(state,3);

outimages;

ends

ends

ends}
ends:
ends;

! SANMTA CLARA UNMIVERSITY
DEVEL.OFED FOR MASA/AMES
NMCC2-33534

FPERFORMANCE ANMALYSIS OF LAN 3
1 KKK KKK K K AR K KKK K K KK KK KKK KK KK K K oK KoK KKK oK KK K KKK KKK KKK AR KKK 3

‘2% as

procedure csmacd_txs_disableds;

e — tw
‘As

called by: process class tx_csmacds

s

! calle: csmacd_tx_end_dams;

an

returns: true 3 ! transition always occurs;

]
¥
!
! globals used: none 3
i
1

! actions: holds for a iam period;
! then calls end jam for a change of statej

1 SRKOKOK KK A KKK KKK KKK KK KK KKK K KKK K K oK oK ok oK 3K 3K K KKK KKK KKK KK KKK KKK 3
boolean procedure csmacd_txs_disabled;

begin
boolean return_codes Votrue if transition occurssi
long real jam_times; ! amount of time for Jam;j
return_code = truej
! assign delay time and hold for itgj
jam_time = 2 X tauj
hold (jam_time);
' call end jam for transition state;j
camacd _tx_end_jiams;
I always return true ,since there’s always a transitiong
camacd_txs_disabled := return_codej
end§

KK K K K 3K K 3K K 3K K oK K oK K oK 3K K oK K oK K oK 3K oK K oK K K X K oK K ok KK K oK 3K ok 3K K K KK K KR KKK KKK KK

!
!
!
! procedure csmacd_txs_wait_for_re_tx;
!
!

called by: process class tx_csmacds

A

! calls: csmacd_tx_end_of _delays

! retuwrns: true if n <= 16, false otherwise:
= globals used: checks the value of n declared in tx_csmacd j
v actions: if n <= 16, calls csmacd_tx_end_of_delays

tw
.

§ AROKOK KKK KKK KK KK KKK K KK KKK KA K KA AR KA KKK KKK KA KKK KK KKK KK KKK §
boolean procedure csmacd_txs_wait_for_re_tx;

N LSS R]
-

boolean return_codej
integer max_tries; ! max number of attempted

max_tries 1= 163

' call the transition if n <= max_tries;

if (n <= max_tries) then

begin
return_code := csmacd_tx_end_of_delays

end

else

begin
! return frame pointer to ips:
frame =:— get_frame_from buffer;
stx_ip(id).transmit_failed(frame);
return_code = falsej

ends

cemacd_txs_wait_for_re_tx = return_codej

ends;

1 3RK KA KRR KK AR K KK KA K KK KK KKK KKK K KKK K KKK K ok ok ok oK oK K KoKk kKK KoKk K oKk K KKK 5

‘4% a3

!
J
! procedure csmacd_txs_idles
1

: called by: process class tx_csmacdj

‘AR

calls: csmacd_tx_attempt_send;

globals used: 3

!
!
!
! returns: true if transition occurs, false otherwise;
!
!
! buf.states

i

v actions: represents the idle states
1=
1 3k oK AR KK KKK KK KK KK KK K K K KKK KoK KKK KK KKK KK K AR K KK AR K KKK KKK KKK §
boolean proceduwre csmacd txs_idlej
begin
boolean return_codes;

1 ipitialize return codej
return_code = falsej;

! is there a possible transitionj;
! if the buffer is full_tx;
' attempt to sends

' igs there something in the buffer to send;

if (buf.state = FULL) then

- begin

e " return_code := csmacd_tx_attempt_sends;
ends;

cemacd_txs_idle = return_codes

endg;

txg

1 oROKSK KKK KKK KK K K K KK K o K 3K 3K oK K Sk oK oK 3K KK KK K R KKK KKK K KKK KK KK KKK KKK K 5

% g

‘ax

1w
-0

procedure csmacd_txs_attempt_txs

called by: process class tx_csmacdg

calls: csmacd_tx_end_of_collision_windows

returns:

globals

csmacd__tx_collisiong
true if transition occurs, false otherwises

used:s tauw 3

actions: represents attempting to tramsmit states
checks the channel variable to see if collisiong

has occurred between attempt_to_send and now;

if not, holds for two tau total before checkings
to see if collision has occurred. This is the j

collision window timej

3K KK AR K K K K KK KKK KKK AR K KKK K K KK K K KK oK K K KK KK K KK KKK KK KKK KKK XK 3
boolean procedure csmacd_txs_attempt txjz

begin

boolean

return_codesy

return_code 1= truej

! can we proceeds;
' hold before checking state variablej
hold(tau)s

if (schannel_csmacd.csmacd_channel_state

begin

end
else
begin

ends;

! increment the access variablesj
schannel_csmacd.csmacd_channel_state ==

= Q0) then

schannel_csmacd.csmacd_channel _state + 13

' hold for the collision windows
hold(tau)s

! did we collide with another carriers;
if(schannel_csmacd.csmacd_channel_state > 1
begin

comacd_tx_collisiong
end
else
hegin

csmacd_tx_end_of_collision_windows
end;

I increment the access variablej;
schannel_csmacd.csmacd_channel _state 3=

schannel_csmacd.csmacd_channel_state
hold{(tau)s;

cesmacd_tx_collisions

Y then

+ 13

cemacd_txs_attempt _tx == return_codes
ends

!**;

B e

procedure cemacd_txs_acquire_channels

called by: process class tx_csmacds

calls: csmacd_tx_end_of_ tx_messagesx

returns: true if transition occurs, false otherwises

globals used: 3
taus

A

actions: represents the tramsmit states
calculates the tx_delay and the transmit_timej

|
!**;
boolean procedure csmacd“txsﬂacquire_channel(sendingﬁframe);
ref(frameunit) sending_frames ' frame to be sents
begin

long real transmit_times

long real transmit_rateg

boolean return_code;

(W return_code = falses;

! calculate transmit timesj
tx_delay := sending_frame.bytes % 8 / data_ratey

transmit_time :=tx_delay — 2 X taujg

if (transmit_time < O) then
transmit_time = 0.03

hold (transmit_time)s;

' is this the end of the transmission messages;
return_code = csmacd_tx“endwof_tx_message(sending“frame);

csmacd_txs_acquire_channel = return_codes;

endg

! SANMTA CLARA UMIVERSITY
DEVEL.OFED FOR NASA/AMES
NCC2-504
FERFORMANCE AMALYSIS 0OF LAN H

!**;

1
! procedure csmacd_tx_end_iamj
1
1

called bys csmacd_txs_disabled 3

calls: nones

returns: none 3

K)

globals used: 3
state 1= WAIT_FOR_RE_TXj3
schannel csmacd.csmacd_channel state:= 3
schannel _csmacd.csmacd channel_state- 13

actions: ends the Jjams
transitions the transmitter to wait for re—tx.j
changes channel state to free by decrementing statess

checks channel_queue with last transmitter in Jamj

e W iwm e S WM e S e O am T aw V m *

KRR OK KKK KKK K 2 oK oK K K K 3K K K K KK KR KK KK KKK KK K KKK KKK KK KKK KKK KK KKK §
procedure csmacd_ _tx_end_ damj

begin
' from disabled states
! gwns the transition from disabled to waits
' for re—-transmissiong
' (dam over)3
' reset state variabless
I transmitter waits for re_itx;
state 2= WAIT_FOR_RE_TXj
! decrement the channelj
schannel_csmacd.csmacd_channel_state:=
schannel_csmacd.csmacd_channel_state — 13
' was this the last transmitter in the jiam? &
if (schannel_csmacd.csmacd_channel_state = 0) then
begin
! check to wake up channel queues
cemacd _tx_check_channel gqueues
ends

end;
i!'.f. :-7

1 oKARK K KKK K K KK KK K K K KK KKK K KK K K K K KK K KK KKK KKK K KKK KKK R KKKk

procedure csmacd_tx_end_of_delays;

- - - — -
- ‘AR aa

an

]
3

1
!
.
- 8
1
1
1.
- N
'

R T e L L S 2 HIPER R W) WA T YTRVS A oo e DA

calls: nonesg

returnss: j
true if number of tries is less than sixteensg
false if max number of tries attempteds;

globals used: j§
n number of transmission attemptsg

actions: transitions to the idle statesj

1SR KKK KKK KA K KA KKK KKK KK KA KKK AR KKK A A AR KK KK KKK KKK K KKK KKK 5

boolean procedure csmacd_tx_end_of_delay;

begin

“ends

10

boolean return_codes
long real wait_times;
integer wait_maxs

! initialize variabless:
return_code := truej;
n = n + 13

! get a wait max value based on nj
if (n > 10) then

begin
wait_max = 1023:
end
else
begin
wait _max s= (2 ¥k n - 1) — 13
ends

! get the wait time;
wait_time := randint (O,wait_max,u)3

hold(wait_time X% tau)3

! reset state variables
state = FREE}

! check to see if we're over 16 attemptssi
if(n > 16) then
begin
return_code = falsej
endj

camacd_tx_end_of_delay == return_codej

,!i***;

procedure csmacd_tx_attempt_send;

called by: csmacd_txs_idle 3

! callsz: nones

¢ returnss 3
always trues

)
! globals used: 3

! state 1= ATTEMPT_TX;

! schannel _csmacd.csmacd_channel state:= j

! schannel_csmacd.csmacd_channel state + 13
channel_gueues;

actions: try to gain control of the channels
transitions the transmitter from idle to attempt _tx.s:
! if not possible.goes into channel queues

1 3k KK KK KK K K K K K K K oK K KK K K K KK oK K KoK oK oK KK ok K K K R KKK KKK KK KKK KKK 3
boolean procedure csmacd_ _tx_attempt _send;
begin

boolean return_codes;

! from idle stateg
! owns the transition from idlevto 3
! attemptimg to send;

' initialize variabless
return_code = truesj

' is the channel frees
(' reset state variables;

' can we get the channel;
if (schannel_csmacd.csmacd_channel_state = FREE) then
begin

! we can get the channelj;

state = ATTEMPT_TX:

end
else
begin
' wait for the channelg
! no change of state,passivate in queuej;
wait(schannel_csmacd.channel_queue);
andj

' assign return values
cemacd_tx_attempt_send := return_codes;
ends;

1 KO KK KK KKK KK KKK A K K KKK K K K KoK K K KK A K R AR AR KKK KKK KKK KKK KKK R KKK 3

! procedure csmacd_tx_end_of_collision_windows

called by: csmacd_txs_attempt_tx §

]

!

! calls: nones;

]

! returns: none 3
1

L Y B et SRR o dhesdi i b J

state := ACQUIRE _CHANNEL ;

- e 4w
s

actions: ends the collision windows

. transitions the transmitter to end of collision windows
! owns the transition from attempting to 3

! transmit to acquiring channels;

|

3K K K KK K K K K K K K 3K KK K K KoK K oK K K 3K K oK oK K K oK K oK KK KK KKK K K KK KKK R KR KKK KK 5

procedure csmacd_tx_end_of_collision_windows;

begin
' from attemptimg to transmit states
1 reset state variables;
state = ACAUIRE_CHANMMEL 3

end

8K KK KK K KoK KK K 3K K 5K K oK 3 3K K oK K 5K K KoK oK K oK K K oK K K KK K KoK K K oK KKK KK KKK KKK KKK 5

procedure csmacd_tx_collisiong

g e cwm g
“an

called by: csmacd_txs_attempt_tx 3
! calls: nonejg
(returns: none 3

globals used: j
state = DISARLED;:

actions: ends the iamg
owns the transition from attempting to 3
transmit to global collisions

! transitions the transmitter to disabled.s;

1 RORKOK KKK KKK AR K AK A AR AR KK K KKK AR A KK A K KKK KKK KKK KKK KKK AR KK §
procedure csmacd _tx_collisiong

begin
' from attemptimg to transmit statej
! reset state variabless
state = DISARLED:

ends

KK KKK KKK A A KKK KA KK KK KKK KK KKK KA KKK KKK K KKK KKK KKK KKK KKK 5

‘AR g

]
]
!
! procedure csmacd_tx_end_of_Tx_framej

{ called by: csmacd_txs_acquire_channel j

calls: nones

s

returns: true if frame received,false otherwise j

@ A ey T L am U g
‘an

globals used: j§

-] . e S e RO RN X, -

S S FAARE TR R e ||| Ser @ TRTNN Rae Bl W e e e Y v 0 T T T e

actions: ends of transmissiong
calls the rx_csmacd receive routine j
! decrements the channel state variables;
! checks the channel gueue for entities waiting
! for the queuej
I u
o KKROK KK oK K K oK K A KK K R K KKK KK K oK KK oK KoK KK oK K K KK KoK K KKK K oK oK KA R KR KK KKK KK
boolean procedure cemacd_tx_end_of_tx_message(sending_frame);
ref(frameunit) sending_frames;
begin
boolean return_codes;
return_code = truej

' from transmitting states
' owns the transition from transmitting to j

' idlesg

! change the receiver message pointers;

schannel_csmacd.csmacd_channel state — 13

return_code = srx"csmacd(sending“frame.dest_addr).receive(frame) H

! decrement the channel variables;
schannel_csmacd.csmacd_channel _state:=
schannel_csmacd.csmacd_channel_state — 13

! do we have anybody in the channel gueues
camacd_tx_checlk_channel_queaues

! get the return codesg
cemacd_tx_end_of_tx_message := return_codes

ends;

SKOK K K K oK KK KKK oK K K A K K KKK KKK K KK K A K KK KKK K KK K KKK K oK K KKK AOK KKKk 3

!
!
!
! procedure csmacd_tx_check_channel queuej
1
!

called by: csmacd_tx_end_of_tx_message j

calls: nones

s

returns: none 3

!

!

!

!

!

! globals used: 3
L schannel_csmacd.channel queue j
!

;

!

!

!

!

actions: checks the channel queue to see if anybody 3
waitings
takes any transmitters waiting out of the
queue and activates themj

a3 At

¥

1 =<8 ok sk 3K K K KK 3K 3K K 3K 5K 3K 2K 3 K 3K o 3K K oK oK K KK KK K K K K KK 3K KK KK KK KKK K KKK KRR KKK 3
. Jscedure csmacd_tx_check_channel_gqueuesj

begin

ref(tx_csmacd) next_transmitters;

' wake up anybody in line for channelsj
if(not (schannel_csmacd.channel_queue.empty)) then
begin

[p—_ 4 e ——— e~ B L -t e s - k.

Y ITd de e A TR e W S e T EEE T T T S

begin
next_transmitter :-—- schannel,csmacd.channelnqueue.firgt;
next_transmitter.outs
activate next_transmitters;
endgy
endj
ends

1 SRR KA A K KK KK KKK K A A K KKK KKK 3K KK KKK KK KKK KKK KA KA KKK KKK 3

procedure reset_tx_csmacds

called by: tx_csmacd 3

calls: resety
clear_buffersy

‘52

globals used: j
n = 03
tx_delay 3= 0
total_delay = 03
change_state:= falsej
clears the buffer;

!
!
!
!
!
!
}
!
!
! returns: nonesy
!
!
!
!
!
!
!
!

! actions: 3§
! resets the cesmacd_tx variablesg
U5
!*************x*******************x**************xx********;
procedure reset_tx_csmacdj
begin

! reset entity variabless

reset;

' reset the tx_csmacd variablessj
n = 03

tx_delay 2= O3

total_delay == O3

change_state = falses

I clear the buffer;
clear_buffers;

end;

procedure dma_transfer(no_bytes);

e e e svew v oo - - — -

procedure dma_transfer

This procedure executes a hold to simulate a dma transfer.
It used the number of bytes passed to it to determine the
actual lenght of the hold.

- v - ¢

Globals: dma_xfer_rate

integer no_bytes;
begin
hold(no_bytes X B /dma_xfer_rate);

S E=TIRA R

LAKKXK

koK
hool
ref(
begi

end;

K KKK KK K A K KKK K KK KK KKK KK A K K K KK KK KK KKK K KKK KoK KK KK KK AOKK K KKK 3

hoolean procedure receivej;
called by: csmacd_txs_idle,csmacd_rxs_idle 3
calls: nones

returnss §
true if frame entered into bufferj
false otherwises;

globals used: ;3
buf ~ current buffersy
buffer_interrupt — set when frame enters buffer;

actions: j
takes a frame and puts it into the buffersj
sets the buffer state to fullg
sets buffer_interrupt to truejg
holds for dma_xfer timej

KK KKK A K K KKK 3K K K K K K KK K K K K K oK K ok K R K oK oK K KK K K KKK KK KKK KKK KK g
ean procedure receive(in_frame);

frameunit) in_frames;

n

boolean return_codes

retwn_code 3= falses:

' if the buffer isn’t full,put the frame inj
if (not (buf.state = FULL)) then
begin
!' put the frame in the buffer g3
in_frame.into(buf);

! gset the buffer stateg
buf.state == FULLj;

' gset the buffer interrupts
buffer_interrupt = true;j

! hold for transfer times
dma_transfer(in_frame.bytes)3j

return_code = truej
ends
receive 1= return_codes;

SANTA CLARA UNIVERSITY
DEVELOFED FOR MASA/ANMES
NC .:l.. 4

FERFORMANCE ANAIYSTS OF LAN 5

‘**'

A

process class rx_csmacds
substructure of: class protocols;
callse 3

cemacd_rxs_idle 3

csmacd_rxs_receiving H

returns: none

globals used: 3
loops on the state and change status boolean

actions: mimicks the receiver of the csmacd ;
activates rx_ip when appropriates;

'**'

(

camacd class rx_csmacds
hegin

U attributess
long real rx_delays ' in usecss

! state routines;
I determine if a transition will occursg
1 return a boolean true if transition occurs;

' files that contain the state subroutines and specific proceduress
2IMCLUDE csmacd_trxs.sim
“IMCLUDE csmacd_rx.sim

! main bodys
begin
rx_delay = 10.03

! initialize attributess
! loop forevers;
while true do

begin

! do we check for a transition 3
if ((not change_state) and

(not buffer_interrupt)3} then

begin
passivates
change_state = truej

else
begin

! reset the transitionj
change_state := false;

1 identify the statej;

if (state = FREE) then

begin

change_state ==
cemacd_rxs_idle 3

end

elese if (state = RECEIVING) then

begin
change_state =
cemacd _rxs_receiving H
' is the buffer full receivings:
if (change_state)} then
begin
! wake up the ip lavers;
activate srx_ip(id)i
! reset the variablessg
reset_rx_csmacds
end ;3
end
else
begin

outtext(" ERROR INM IDENTIFYING C_RX_STATE") 3
outint(state,d); .

outimages;

end 3

endj

ends;
ends

! SANTA CLARA UMIVERSITY
DEVELOFED FOR NASA/AMES
NCCZ2-354

FERFORMANCE AMALYSIS OF LAN H
1 3ok oK KKK K KK KK KK KK oK 3K KK KK AR KKK A KKK KKK KKK K K KKK KKK K K KKK AR KK KKK 3

procedure csmacd_rxs_idles

called by: process class rx_csmacds;

f oy 1O L twm e
‘an

calls: csmacd_rx_frames;

! returns: true if transition occurs, false otherwisej

\
! globals used: buf.state 3
'3

1

actions: represents the idle states

ok KK KKK KK KK oK K K oK KK KoK K K KKK K oK KK K K oK KK K oK oK K Kok oK KK KK KKK KKK KKK K 5
boolean procedure csmacd_ rxs _idlesj

begin
boolean return_codes
(W ' initialize retwn codej
return_code = false;
! is there a possible transitiong
U attemplt to sendg
if (buf.state = FULL) then
begin
return_code = csmacd_rx_frames;
end;
cemacd_vrxs_idle 2= return_codes
ends;

1 3ok oK KRR AR KOR KK KK KK K K KK KK KK KKK oK KKK K KK KK K KKK KK KK KK AR AOR KKK KKK 5

5
procedure csmacd_rxs_receivings

s

i
]
! called by: process class rx_csmacds
1
1

calls: csmacd_rx_buffer_fulls

“AE

! returns: true if transition occurs, false otherwisej;

globals used: none j

]
! actions: represents receiving stateg
! checks to see if the buffer s fullj

!i**************#**g
boolean procedure csmacd_rxs_receivings;

| A T S

end

boolean return_codes;
return_code = falsej;

! check to see if we have a transitiong
return_code = csmacd_rx_buffer fulls;

! hold for a receiving timej
hold{(rx_delay):

camacd_rxs_receiving 3= return_codesj

R | D

! SANTA CLARA UMIVERSITY
DEVEL.OFED FOR NASA/AMES
NCC2-554
FERFORMANCE ANALYSIS OF LAN H
1 3K AROK KKK KK K K K K oK K KKK KK KK KA KK KK A K K R AR KK K KK K KKK KKK KKK KK KKKk 3

! procedure csmacd_rx_frames;

called by: csmacd_rxs_idle 3

calls: nonesg

! returns: always true 3

! globals used: none 3

! actions: changes the state from idle to receiving j
owns the transition for recieving message;

I w

1 3KK K K K K K oK 3K KK 3 K K oK oK 3 K K oK K oK oK oK oK o oK ok KK K oK KK K oK KK K K K KK KKK KK KKK KKK 5
boolean procedure csmacd_rx_frames;

begin

hoolean return_codes

return_code 2= truej

—

' regset state variabless
state 2= RECEIVING;

' gset the return values
cemacd_rx_frame = retwn_codej
end sy

1 3ROK AR AKOK M KK A KKK KK KK K K K K K K KKK K XK K KKK K KKK K KK K KKK KK KKK KKK R KKK 3

procedure csmacd_rx_buffer fullsj

called by: csmacd_rxs_receiving 3§

as

calls: nonej

returns: none 3
true if frame was sent to rx_ip;
false otherwise;

globals used: frame { frame pointer) 3

actions: imitates the receiving state j;
owns the transition for recieving buffer fullj

ot T g T ey YW cam T am T Ly M e Ve

4

~C

DK KKK AR HOKOK K K K KoK KK 3K K K KKK AR A K K K 3K oK oK K KK KoK KK oK KK K ok K Kk KK ok KKKk KKK
boolean procedure csmacd_rx_buffer_ fullgj

begin

boolean return_codes

! initialize variables;

3%

I w
L4

! get the next frame to send;
' or loop on the last ones
if (frame == none) then
bhegin
frame 1- get_frame_from_buffers;
ends

' if we got the sending frame, pass it ups
if (frame =/= none) then

begin
if(srx_ip(id).state = FREE) then
begin
I gset the frame pointer for the ip layers;
return_code 1= srx_ip(id).receive(frame)
end
else
beqgin
return_code = falsej
ends;
end
else
begin
return_code = falsesj
end:

! gset the return values
csmacd_x_buffer_full := return_codej

procedure reset_rx_csmacds;
called by: rx_cemacd 3

calls: resets
clear_buffers;

returns: nones
globals used: 3
change_state:= falses

clears the buffers;

actionss 3§
resets the rx_csmacd variablessg

1 RAOKKK KK AR KK A AKAKKK KK KKK KA KA AR KKK KKK KA KK KKK KKK KKK KKK AR K KKK 3

procedure reset_rx_csmacdg

begin

! reset entity variabless;
resets;

! reset the rx_csmacd variabless
change_state = falsesj

t clear the buffers

clesaw hiif€fowse

A

v (R S LN N B)

ends;

scedure dma_transfer(no_bytes)s

! procedure dma_transfer

1

I This procedure executes a hold to simulate a dma transfer.
I Tt used the number of bytes passed to it to determine the
I actual lenght of the hold.)
]
1
|-

Globals: dma_xfer _rate

‘ag A% gy ‘B4 -z3 ‘4% ‘3% WA ‘z3

integer no_bvytes;
hegin

hold(no_bytes X 8 /dma_xfer_rate);
ends

1 RORAK KKK AOK K KK oK KK KK KKK KKK K oK KK KK K KA oK K KKK KK KoK KK KK KKK KKK KKK

boolean procedure receives

called by: csmacd_tixs_idle,csmacd_rxs_idle 3
calls: nones
returns: 3

! true if frame entered into bufferj;
! false otherwises

an

globals used: 3
buf — current buffers;
buffer_interrupt - set when frame enters buffers

‘as

takes a frame and puts it into the buffers;g
sets the buffer state to fullj;
sets buffer_interrupt to trueg
! holds for dma_xfer timej
| "
3K K KKK KK KKK K K oK 3K K oK 3K oK oK 3K oK K K ok oK K K K KK K KKK KoK 3K ok K K K K oK oK K K KR KK K K KKK 3
boolean procedure receive(in_frame);
ref(frameunit) in_frames
begin
boolean return_codes
return_code := false;

1
!
¥
{
! actions: 3
!
i
1

! if the buffer isn‘t full,put the frame ing
if (not (buf.state = FULL)) then
begin
! put the frame in the buffer j
in_frame.into(buf);

' get the buffer statesj
buf.state z= FULLj

! set the buffer interrupts;
buffer_interrupt == truej

i

' hold for transfer times
dma_transfer(in_frame.bytes

return_code = truesj
end;
receive 1= return_codesj
end s

! SANTA CLARA UNIVERSITY
DEVELOFED FOR MNASA/AMES
NMCC2-554

FERFORMAMCE ANALYSIS OF LAN 3
1 ROK KKK KKK KA KR A K KK KKK AR K KKK KKK KKK AR KK KKK K KKK KKK K KoK KKK K 3

!
!
! process class channel _csmacdsj
!
!

substructure of: class protocols

A

! calls: nonej

! returns: none 3

! globals used: initializes channel variables j
! camacd_channel_state:= 0 (FREE)3
! channel _queue :1— new heads;

! actions: mimicks the channel j

1ok KK KK KoK K KKK KK KK KA K KKK K KKK KK KKK KKK KKK K AR KA KKK KKK K KKK 5
class channel csmacdj

3in

! attributess
integer csmacd_channel_states

ref (head) channel_queues

' main bodys
! initialize attributess;
hegin
cesmacd_channel_state:= O3

channel_queue :— new head;
ends;

ends;

TN b

10.0 ! data_rates

1.0 ' interrupt _timesg

40 .0 ' dma_xfer_rates;

¢ 000040 1 oaver _arrival _times;
5.0 ! prop_delays

1500 ! max _frame_sizes

000 ' aver_msg_sizes

10.0
0.3
80.0

1C00040

5.0
1500
5000

I
I
]

data_rates;
interrupt_timeg
dma_xfer_rates

U aver_arrival _timesg
prop_delays
max__frame _size;
aver_msqg_size:

station #
i

o

3
4
5
é
=
8
?
16

network _throughput =

throughput

6.71681891 58001
5.1795378578-001
7.37005134658-001
7 .9347 563018001
6. 2742939878-001
7 .085%4525894~001
1 .8324100928~001
5.897607711%-001
7 .8294486688-001
1.0424572528-001

aver_delay_ per_frame =
time 3.3873000008+0058

simulation

M@»ﬁ- 1D~ o

aver delay / frameg success reiect

1 .8610000008+003
2. 4133334058+0035
1. 6960533088+003
1. 5783476898+003
1.9922560258+003
1.7641681008&+003
46.8216170898+003
2.119503467&+0035
1.59463364278+003

1.1990899378+004
1.9484545218-001 “
830714888+003

14 O
14 O
10 0
14 0
12 0
10 0
12 0
16 0
146 0
14 0O

L

station #
1

p
.
b d

3

4

a8
P
10

simulation

throughput

WA e T

aver delay / frame success rejiect

5. 5337488646008~001 2.25

7. 1575062268001
B8.463272681558~-001
738001
78&-001
2355001

2.48%

7.0338
6.9886058
7. 5745940855-001
7.1501074645-001
8.1807711
7. 8736365658001
network_throughput =
aver_delay_ per_frame

timea

258001

5.0243100008+006

i
el

1.630

73418068+003
1.7464183208+003
1.4479781738+003
5, 028516571&+003
1.7720860518+003
1.7886256948+003
34478+003
1.7482254738+003
1. 8279733188+003
1.5875764528+003

1.8609520518-001 ’
= 2. 0554995308+003

s

28
1 '»6
20
10
15
19
17
16

0
O

oNsReNoReRe RO

L.

I

-

{1

H-—\,AMWWIW\ "™ “WW“"“

k-

station ¥

il

network__throughput =

1
3
%
il
&
7
5]
@
10

throughput

6.92149489 58001
1. 4205486428-001
1.2776807428%-001
1.88115386238-001
6. 2047403345001
7 7613669755001
3.148%481 438001
8.0594857564~001
3.5157386775&-001
B8.723454%2068-001

aver_delay_per frame =

gsimulation

4

-

‘\' -

time

aver delay / frame success reiect

1.8059682478+003
8.7994170908+003
9 .7833516508+003
& . HAABHBEPLEA00D
1.8103504838+003
1.6105410358+0035

1.5340156028+003

1.5509732148+003
3.5054405898+003

1.43291850958+003

1.8642285808-001 ’
3.8527835118+003

4.3181400008+006

19 0
10 0
14
18
13
19
16
14

-
£

o)
A

COOCCCOT

s
£

